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The physical basis behind the Ostwald ripening process for two-phase mixture has been
reviewed in detail, using the various theories developed to describe this process. The
Ostwald ripening, also termed second phase coarsening, is generally thought to be slow,
diffusion-controlled process which occurs subsequent to phase separation under extremely
small under-saturation levels. The major advance for the description of this process was
made when Lifshitz, Slyozov and Wagner (also known as the LSW theory) published their
papers more than fourty years ago. This classical LSW theory predicts that the ripening
kinetics and the particle size distribution function are applicable to dilute systems only [i.e.
when the volume fraction (Q) of second phase approaces zero: Q → 0], in which
particle-particle interactions are not important. After the publication of the LSW theory,
many experimentalists tested the veracity of the theory. Experimentalists have confirmed
the prediction of self-similar ripening behavior at long times. However, virtually none of the
reported distributions are of the form predicted by the LSW theory. The reported
distributions are generally broader and more symmetric than the LSW predictions. It was
later realized that a major problem with the LSW approach was the mean field nature of
the kinetic equation. In order to remove the zero volume fraction assumption of the LSW
theory, the many theories have been developed based on the statistically averaged
diffusion interaction of a particle of given size class with its surroundings, using both
analytic and numerical methods. Many attempts to determine the statistically averaged
growth rate of a particle either do not account for the long-range nature of the diffusional
field surrounding the particle, and/or employed ad hoc assumptions in an attempt to
account for the diffusional interactions between particles. The strength of the diffusional
interactions between particles stems from the long range Coulombic nature of the diffusion
field surrounding a particle. As a result, particle interactions occur at distances of many
particle diameters and restrict the validity of LSW theory to the unrealistic limit of zero
volume fraction of coarsening phase. More realistic models of the ripening process at
finite-volume fractions (Q) of coarsening phase have been proposed by various workers
such as Brailsford-Wynblatt (1979), Voorhees-Glicksman (1983), Marqusee-Rose (1984),
Tokuyama-Kawasaki (1984), Enomoto-Tokuyama-Kawasaki (ETK) (1986), and
Yao-Elder-Guo-Grant (YEGG) (1993) models. Although a great deal of progress has been
made in understanding Ostwald ripening, a fully satisfactory approach has not yet been
found, and it has remained a vexing problem in the field. At present, it is very difficult to
determine which of these theories best describes coarsening at finite volume fraction. The
statistical mechanical theories, developed to describe systems in which Q � 1, employed
the same microscopic equation to describe the coarsening rates of individual particles, but
different techniques to perform the statistical averaging. In addition, these theories can be
distinguished on yet a finer scale. All of the theories predict that the rate constant will vary
as Q1/2 in this low volume fraction limit. These theories predict that the scaled
time-independent particle radius distributions become broader and more symmetric than
those predicted by LSW as the volume fraction increases. Clearly more experimental and
theoretical work is necessary in order to settle the subtle disagreement now existing
between the various Ostwald ripening theories. c© 2002 Kluwer Academic Publishers
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1. Introduction
Coarsening is phase transformation process which has
been observed in a large number of metallic and non-
metallic systems where particles with various sizes are
dispersed in a matrix. The driving force of this process
is the decrease in total surface free energy. The process
occurs by the growth of large particles at the expense
of smaller ones which dissolve. At any stage during
coarsening there is a so-called critical particle radius
R∗ being in equilibrium with the mean matrix compo-
sition; particles with R > R∗ will grow and particles
with R < R∗ will shrink.

Precipitation processes occur by the nucleation and
growth of the second phase from a supersaturated solu-
tion. The end point is a dispersion of precipitate parti-
cles embedded in the matrix, whose sizes vary depend-
ing on the nucleation rate (and its time dependence) of
the precipitate. Thermodynamically, this state does not
satisfy the requirement of a minimum energy configu-
ration because of the excess surface energy represented
by the particulate ensemble. The system therefore con-
tinues to evolve to the state where the surface energy
is lowered as much as possible. In a finite system, the
theoretical endpoint of this evolution would be a single
precipitate particle that contains the entire volume frac-
tion of the second phase. This evolution of the particle
size distribution that is driven by excess surface energy
is defined as coarsening.

In general, any first-order transformation process re-
sults in a two-phase mixture composed of a dispersed
second phase in a matrix. However, as a result of the
large surface area present, the mixture is not initially in
thermodynamic equilibrium. The total energy of the
two-phase system can be decreased via an increase
in the size scale of the second phase and thus a de-
crease in total interfacial area. Such a process is termed
Ostwald ripening or coarsening, after the physical
chemist W. Ostwald, who originally described the pro-
cess qualitatively [1, 2]. Since the excess energy asso-
ciated with the total surface area is usually small, such
surface energy driven morphological changes typically
manifest themselves as the last stage of a first-order
phase transformation process. Early attempts by Green-
wood [3] and Asimov [4] to construct a quantitative the-
ory of the Ostwald ripening process did not meet with
success since both theories are based upon an unrealis-
tic solution for the diffusion field in the matrix. Phase-
separation processes frequently result in a polydisperse
mixture of two phases of nearly equilibrium compo-
sitions and volume fractions. Such mixtures can also
be created artificially by irradiating materials to creat
voids or, as is done in liquid phase sintering processes,
by mixing together powders of different composition.
Despites the nearly equilibrium state of the two-phase
system, the mixture is not in its lowest energy state. This
is because of the polydisperse nature of the mixture it-
self and the presence of a nonzero interfacial energy.
Thus in the absence of elastic stress, the total interfacial
area of the system must decrease with time in order for
the system to reach thermodynamic equilibrium. There
are many ways the system can reduce this excess in-
terfacial area. The process of interest here is when the

interfacial area is reduced via a diffusional mass trans-
fer process from regions of high interfacial curvature
to regions of low interfacial curvature. As mentioned
above, this interfacial area reduction process is called
the Ostwald ripening or coarsening. This interfacial en-
ergy driven mass transfer process can significantly alter
the morphology of the two-phase mixture. In general,
the average size-scale of the mixture must increase with
time and the number of second phase particles, must de-
crease with time. This change in the morphology occurs
as a result of small particles dissolving and transferring
their mass to the larger particles.

A major advance in the theory of Ostwald ripening
was made in a paper by Lifshitz and Slyozof [5, 6] and
followed by a related paper by Wagner [7] (LSW). In
contrast to previous theories, The LSW developed a
method for treating an ensemble of dilute coarsening
particles, and were able to make quantitative predic-
tions on the long-time behavior of coarsening systems
without recourse to a numerical solution of the rele-
vant equations. The limitation of infinite dilution al-
lows the overall kinetic behavior of a such coarsening
system to be determined without recourse to the details
of the interparticle diffusion field. To treat the contin-
uum problem, LSW made the critical assumption that a
particle’s coarsening rate is independent of its surround-
ings. This is tantamount to a “mean field” description of
a particle’s growth rate. LSW used the hydrodynamic
continuity equation describing the particle radii distri-
bution, and were able to derive the well-known results
that (a) at long times the cube of the average particle ra-
dius should vary linearly with time, (b) that an arbitrary
distribution of particle radii when scaled by the aver-
age radius should assume a specific time-independent
form. Since the time-independent radii distribution pre-
dicted by LSW is usually not observed experimentally,
it is clear that modifications of the LSW theory are
necessary. As a result of the deficiencies in the LSW
treatment, many theories of Ostwald ripening are de-
veloped based on multi-particle diffusion (MPD) solu-
tion. These modern theories (see for example, [8–18])
describing ripening in systems with a finite volume frac-
tion of precipitate particles will be the major part of this
paper.

2. Basic equations
Many two-phase mixtures undergo Ostwald ripening,
or coarsening, and it is widely held that Ostwald ripen-
ing plays a major role in determining the morphology of
finely divided two-phase systems. It is also well known
that if the rate of second-phase growth or dissolution is
not controlled by an interfacial reaction, then the mor-
phological changes occur via the flow of heat or solute
to and flow regions of varying interfacial curvature (or
chemical potential). Although the fundamental mecha-
nisms responsible for Ostwald ripening are established
it has been difficult to construct a realistic theoretical
description of the kinetics of coarsening. The major
difficulty in developing a description of coarsening is
that a solution to the diffusion equation during ripening
has not been available in a form which is amenable to
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practical systems comprised of a myriad of randomly
positioned second-phase regions.

2.1. Thermodynamic driving force
for ripening

Competitive growth takes place among precipitates
when particles with various sizes are dispersed in a
matrix. The growth originates from the concentration
gradients around the particles caused by the thermody-
namic demand, i.e. the Gibbs-Thomson equation: the
concentration at the surface of particles in equilibrium
with larger particles is lower than that with smaller par-
ticles. Solute atoms flow through the concentration gra-
dients both from the surface of the smaller particles to
matrix and from the matrix to the surface of larger parti-
cles. During this process, average radius of the particles
increases. The phenomena can take place in any stage
of precipitation.

Any system of disperse particles statistically dis-
tributed in a medium and possessing certain solubil-
ity in it will be thermodynamically unstable due to a
large interface area. Its decrease in approaching equi-
librium is accompanied by particle coarsening whose
solubility depends on their radii and is described by the
well known Gibbs-Thomson relation

Cr = Ce exp

[
2γ�

RB T
· 1

r

]
≈ Ce

[
1 + 2γ�

RB T
· 1

r

]
(1)

where Ce is the solute concentration at a plane interface
in the matrix in equilibrium with particle of infinite ra-
dius, Cr is the solubility at the surface of a spherical
particle with radius r , γ is the specific interfacial en-
ergy of the matrix-precipitate particle boundary, � is
the mean atomic (or molar) volume of the particle, RB

is the Universal gas constant [8.314 × 103 J /(K. kmol)]
and T is the absolute temperature. The difference be-
tween Cr and Ce induces a diffusive flux of atoms from
the smaller to the larger particles. Thus the average par-
ticle radius increases and the total number of particles
decreases with time, as well as the total free surface
enthalpy of the system.

The Gibbs-Thomson relationship describes the solu-
bility of particle atoms in the matrix, which is the basic
equation which forms the beginning of the analysis.

2.2. Scaling the Ostwald ripening problem
Dimensionless variables will be employed for the re-
mainder of this paper. An appropriate characteristic
length for a system which exchanges during coarsening,
through which all quantities of length will be scaled, is
the capillarity length lC defined as

lC = 2γ�

RB T
(2)

A dimensionless time t∗ may also be defined as

t =
[

DCe�

l2
C

]
t∗ (3)

where t is the time, D is the diffusion coefficient.

Finally a dimensionless concentration θ will be de-
fined as

θ = C − C∞
C∞

(4a)

θ = T − Tm

Tm
(4b)

where θ is a dimensionless pressure, temperature T or
solute concentration C , etc depending on the problem,
C∞ is the equilibrium concentration of the matrix phase
at a flat surface, and Tm is the bulk melting temperature.

2.3. Equations necessary to describe the
ripening kinetics of a two-phase system

Theories of particle coarsening must be statistical in
nature since experimental data are essentially statistical
samples. There are three equations, which arise in the
theory and require solution [19].

(a) a kinetic equation describing the growth or
shrinkage rate of an individual particle of given size,

(b) a continuity equation describing the temporal
evolution of a particle size distribution function, and

(c) a mass conservation equation, which the solu-
tions to the first two must satisfy to be acceptible.

The kinetics of Ostwald ripening processes often are
described by relationships between an average length
scale of the mixture and a temporal law with a posi-
tive exponent. These scaling laws can be derived from
an assumption of sell-similarity of the microstructure
with time or from a kinetic equation that describes the
growth rate of a second-phase particle with respect to
another. For example, Lifshitz and Slyozov (LS) [2, 3]
use a kinetic equation appropriate for an infinitely di-
lute array of spherical particles in a stress-free matrix to
predict that the average particle radius should increase
as t1/3 where t is time. The LS theory assumes that the
mechanism responsible for the transformation process
is the diffusion of mass from regions of high interfacial
curvature to regions of low interfacial curvature. Such
a morphological evolution process is consistent with
a dimunuation of the total interfacial area (and, hence,
total interfacial energy with time) and is called Ostwald
ripening.

2.3.1. The kinetic equation
The kinetic equation is usually the difficult to determine
for it is based upon a solution to a potentially difficult
free-boundary problem. The concentration field equa-
tion describing mass flow, which must be solved in both
phases, is

∇2C = 0 (5)

The justification for neglecting the time-dependence
of the concentration field lies in the small interfacial
velocities, which are present during ripening, along
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with the requirement that an accurate description of
the diffusion field is necessary for only small distances
away from a particle [20].

One set of boundary conditions is the interfacial con-
centrations in the matrix and precipitate phases at a
curved interface. These boundary conditions, the so-
called Gibbs-Thomson equations (see Equation 1), re-
flect the physical process process behind an interfacial
energy-driven ripening process. Using the equilibrium
conditions given by Gibbs [21], it is possible to show
that the compositions of the α phase, Cα , and β phase,
Cβ , in an isothermal system at a curved interface are
given by [19, 22]

Cα = Cα
e + lαCκ (6a)

Cβ = Cα
e + lβCκ (6b)

where lC is the capillary length (see Equation 2) in the
designated phase,

lαC = �βγ(
Cβ

e − Cα
e

)
G ′′α

m

(7a)

lβC =
[
�B

1

(
1 − Cα

e

) + �
β

2 Cα
e

]
γ(

Cβ
e − Cα

e

)
G

′′β
m

(7b)

�β is the molar volume of β, �
β

i is the partial molar
volume of component i in the β phase, Ce denotes the
equlibrium mole fraction of component 2 at a planar in-
terface in the noted phase, κ is the sum of the principle
curvatures of the interface taken positive for a spheri-
cal particle β, and G

′′
m is the second derivative of the

molar free energy of the designated phase with respect
to composition. These expressions for the equilibrium
interfacial concentrations at a curved interface are valid
for a general nonideal-nondilute solution, but are lim-
ited by the condition |C(κ) − Ce| ≤ 1 in both phases.
In addition, they reduce to the more standard forms for
the Gibbs-Thomson equations. For example, in a dilute-
ideal solution lαC = �βCα

e /RB T . These equations show
that the concentration at an interface with high curva-
ture will be above that at an interface with low curva-
ture. In systems with nonzero solute diffusivities, this
difference will cause mass to flow from an interface
with high curvature to an interface with low curvature,
thus resulting in the disappearence of regions of high
interfacial curvature.

The other boundary condition is that the composi-
tion of the matrix is given by a mean-field value of
Ce. Finally, the interfacial velocity is given by the flux
conservation condition at the interface [19],

(Cβ − Cα)Vn = (Dβ∇Cβ − Dα∇Cα) · n (8)

where Vn is the local velocity of the interface in the
direction of the interface normal, n is the normal to
the interface, which is pointing from α to β, D is the
diffusion coefficient in the specified phase, and the con-
centration gradients are evaluated at the interface in the
designated phase.

Although the morphology of the second-phase parti-
cles is not specified, it is usually chosen to be spherical.

2.3.2. The continuity equation
If particles flow through particle size space in a contin-
uous manner, the time rate of change of the number of
particles per unit volume of size R to R + dR, f (R, t),
is given [19] by the flowing continuity equation

∂ f

∂t
+ ∂( f dR/dt)

∂ R
= 0 (9)

where dR/dt is the growth or shirinkage rate of a parti-
cle as given by the kinetic equation, and t is time. The
assumption of a continuous flow of particles specifi-
cally exludes any process that would give rise to dis-
continuous jumps in particle size during the corsening
process, such as nucleation or coalescence. The value
of the mean-field concentration in the matrix required
in the kinetic equation follows from a constraint that the
total number of solute in the system must be conserved,

Co = (1 − Qβ)C∞Cβ (10)

where Qβ is the mole fraction of β, and Co is the
mole fraction of solute in the alloy. The mass conserva-
tion condition must be added explicitly, since the time
derivation in the diffusion equation has been neglected.

2.3.3. The mass conservation equation
The mass conservation equation implies that if the
mean-field condition is a function of time during ripen-
ing, then the mole fraction of the second phase particle
Q must also be a function of time. The mole fraction, is
related to the particle size distribution function f (R, t)
as

Q = G
∫ ∞

0
R3 f (R, t) dR (11)

where G is a geometrical factor that depends on the
particle morphology.

3. Theoretical background in Ostwald
ripening theories

Following two main models will be presented before
describing the modern Ostwald ripening theories.

(a) one based upon an approximation solution to the
multiparticle diffusion problem using computer simu-
lation techniques, and

(b) statistical nonlinear mean-field theory which is
capable of describing coarsening behavior over the
wide range of volume fraction of particles encountered
in materials.

3.1. Multiparticle diffusion (MDP) problem
Voorhees [23] and Voorhees and Glicksman [24]
have described a method for solving the multiparticle
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diffusion problem (MDP). They used point-source rep-
resentation of spherical particles interacting with each
other via their diffusion fields [25]. The particles are
positioned randomly within a reference unit cell at
a specified volume fraction, and periodic boundary
conditions are used to fill all space with coarsening
particles.

The diffusion field whithin the matrix of a system of
coarsening particles in the quasistatic approximation is
given by,

∇2(θ ) =
N∑

i=1

− 4π Biδ(r − ri ) (12)

where θ is a dimensionless temperature or concentra-
tion (see Equation 4) r is a dimensionless vector locat-
ing the arbitrary field point, ri is a dimensionless vector
which locates the center of the i th particle, δ is a Dirac
delta function, and Bi is a constant whose magnitude is
a measure of the strength of the point source (Bi > 0)
or sink (Bi < 0), N is the number of sources or sinks
in the system. All quantities which have units of length
are scaled by the capillary length lC (see Equation 2).
The solution to Equation 12 is

θ (r ) = Bo +
∑ Bi

|r − ri | (13)

where Bo is a constant. The constants Bo and Bi

are determined by applying the following boundary
conditions:

θAV

∣∣∣∣
Ri

= − 1

Ri
(14)

and ∑
Bi = 0 (15)

where θAV|Ri is the surface averaged dimensionless
temperature or concentration of the i th particle. Equa-
tion 14 states that the surface averaged concentration
is to be set equal to the dimensionless temperature or
concentration as specified by the Gibbs-Thomson (see
Equation 1).

3.2. Mean-field statistical models
In addition to the MDP described in the previous sec-
tion, Voorhees and Glicksman [24] investigated also
the average behavior of an ensemble of particles dis-
persed in a matrix at a specified volume fraction. It is
assumed that a typical particle within a size class as
though it alone was interacting with the average en-
vironment established by all the other particles. The
interacting environment is represented by a mean po-
tential α = ρ∗−1, where ρ∗ = R∗/RAV is the ratio of the
radius of the critical particle, i.e., the particle for which
dR/dt = 0, to that of the average particle. R∗ = RAV
and ρ∗ = 1 for zero volume fraction. The mean poten-
tial α acts at a distance ρo from the center of the typical
particle of size class ρ = R/RAV. Again, at zero volume

fraction ρo = ∞, so the mean field α = 1 is established
far from a particle. At finite volume fractions, however,
the critical radius is larger than the average radius so
α is less than unity. If a stochastic potential is defined
as φ = −θ RAV, where θ is the dimensionless diffusion
potential (Equation 13), and RAV is the dimensionless
average particle radius at some instant in time, then
the mean-field problem may be specified in the follow-
ing general form: ∇2φ(ξ ) = 0, ρ ≤ ξ ≤ ρo, subject to
the boundary conditions φ = 1/ρ at ξ = r/RAV, which
is a dimensionless distance r normalized to the time-
dependent quantity RAV. The property of φ(ξ ) which is
of special value here is termed scale dilatation invari-
ance. Scale dilatation invariance implies that the diffu-
sion problem between a typical particle of size class ρ

and the mean field are time independent in the variable
ξ , despite the fact that RAV is a function of time. The
scale invariant solution to the mean-field problem is

φ(ξ ) = α + αρ − 1

ρo − ρ
− (αρ − 1)ρo

ρo − ρ
ξ−1 (16)

which represents the average diffusional interaction of
a typical particle of size class ρ with all the other par-
ticles, as represented by the mean field, viz., φ = α

at ξ = ρo. The flux to or from the particle and the
environment is

4πξ 2∇φ = 4π B(ρ) (17)

and B(ρ) is the stochastic counterpart to Bi as defined
previously (see Equation 12) for an individual particle
in the MDP formulation. If the gradient of φ is evaluated
from Equation 16, then Equation 17 may be solved for
B(ρ) to yield

B(ρ) = (αρ − 1)ρo

ρo − ρ
(18)

α = 1 and ρo → ∞, so B(ρ) = ρ − 1 for the zero vol-
ume fraction.

Since B = R2 dR/dt , then the flux function for LSW
becomes

dR

dt
= 1

R

[
R

RAV
− 1

]
(19)

Equation 19 shows that the average growth or shrink-
age rate, dR/dt , of a typical particle depends on its
size relative to the average, and that particles for which
R < RAV(ρ < 1) shrink, whereas particles for which
R > RAV(ρ > 1) grow. The general form of the flux
function for non-zero volume fractions Q is

B(r ) =
{

(ρ/ρ∗ − 1)(1 − Q1/3)−1, ρ > ρ∗

(ρ/ρ∗ − 1)(1 − Q1/3ρ/ρ∗)−1, ρ < ρ∗ (20)

Solution of Equation 20 requires determination of ρ∗
(or α) as a function of volume fraction Q. The distri-
bution function f (ρ, t) may be expressed in product
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function form:

f (ρ, t) = g(ρ)h(t) (21)

Values of α were found selfconsistently by iterating
the solution for g(ρ) subject to the requirement that
the volume fraction [or equivalently the 3rd moment
g(ρ)] is constant and that the 1st moment of the g(ρ)
distribution must be unity, or

∫ ρmax

0
ρg(ρ) dρ = 1 (22)

Equation 22 arises from the fact that the variable ρ

which occurs when R = RAV.

4. Classical theory of ripening
(the LSW theory)

In order to understand the modern Ostwald ripening the-
ories Voorhees [26] reviewed the classical LSW theory,
which will be presented here. The LSW theory revealed
both power-law growth and dynamic scaling, which are
now considered universal characteristics of the kinetics
of a first-order phase transition. This theory used the
following assumptions:

(a) the coarsening second phase is spherical with
redius R,

(b) the particles are fixed in space,
(c) the inter-particle distances between the particles

are infinitely large compared with the particle radius,
which means that there is no interaction among the par-
ticles, and the volume fraction Q of the dispersed phase
is infinitesimally small (i.e. infinitely dilute system),

(d) both the particles and matrix are fluids, and
(e) the solute atoms diffuse to the spherical particles

under steady-state condition.

The LSW theory has been widely adapted to determine
the values of interfacial energy between the matrix and
the dispersed phase since it provides a useful method
to determine the values. Almost all the observed size
distributions have been, however, broader than that pre-
dicted from the LSW theory.

The morphology of a dispersed spherical second
phase will be characterized in terms of particle radius
distribution f (R, t), f is defined as the number of par-
ticles per unit volume at time t in a size class R to
R + dR. Representing a particle radius distribution in
terms of continuous function f (R, t) implies that there
exists sufficient numbers of particles in the system for
such continuum approach to be valid [26]. From the
definition of f it is clear that N (t) = fo, where N (t) is
the number of particles per unit volume, and

fn =
∫ ∞

0
Rn f (R, t) dR (23)

Thus, the flux of particles passing through a size class
R to R + dR is f · Ṙ, where Ṙ = dR/dt . Therefore,
the time rate of change of f is given by a continuity

equation of the form

∂ f

∂t
+ ∂( f · Ṙ)

∂ R
= J (24)

where J is a production term in particle size space.
In the LSW theory, J is set to zero, which means that
processes such as nucleation and particle coalescence,
which introduce new particles of a given size class, are
negligible. The flux of particle in size space is con-
trolled by the function Ṙ(R). In the LSW theory, Ṙ(R)
was determined by examining the growth or dissolution
of an isolated spherical particle into a supersaturated
medium.

The starting point of the LSW theory is the diffu-
sion equation for the concentration C in the steady-state
limit (or by employing quasistasionary approximation
for the diffusion field in the matrix):

∇2θ (R) = 0 (25)

This determines the flow of material between particles,
subject to the Gibbs-Thomson boundary condition at
the surface of a particle of radius R.

Along the boundary conditions,

θ (R) = 1

R
(26)

Lim
r→∞ θ (r ) = θm (27)

where θm is the supersaturation of the matrix during the
Ostwald ripening [i.e., θm(t) � 1]. Equation 26 is the
dimensionless form of the linearized Gibbs-Thomson
equation, assuming the ideal solution, for the solute
concentration in the matrix at the surface of a spherical
liquid particle. If the particle or matrix is solid, it is not
posible to use Equation 26. By requiring flux conserva-
tion at the matrix-particle interface and that the particle
is pure solute, Equation 25 with Equations 26 and 27
yields

Ṙ =
θm − 1

R
R

(28)

As a result of the quasistationary approximation is that
this kinetic equation is valid for both growing and dis-
solving particles. Equation 28 shows that it is a mean
field nature. This is a result of employing Equation 27
as a boundary condition, i.e. a particle grows or shrinks
only in relation to a mean field concentration set at
infinity.

The final element of the LSW theory is mass conser-
vation. Mass or solute conservation must be explicitly
added to the theory because Equation 28 is based on a
solution to Laplace’s equation, which does not conserve
solute. Assuming that there are no sources of solute ex-
ternal to the system, solute conservation demands that
the total solute content of the alloy be divided between
the particle and matrix, viz.

θo = θm(t) + λ f3(t) (29)
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where θo is the bulk alloy composition and λ ≡
4π/(3�Ce). The parameter θm can be determined from
Equation 29, and thus θm couples mass conservation
into the kinetic equation. Instead of solving Equa-
tions 24, 28, and 29 for all times, the LSW theory found
an asymptotic solution valid as t → ∞.

The main problem is to reformulate the theory in
terms of a double scaled variable ρ ≡ R/R̄ where R̄ is
either the critical radius RC = 1/θm (the particle with
Ṙ = 0) or the maximum particle size in the system [27].
Using the reformulated kinetic equation in conjunc-
tion with the solute conservation constraint, the LSW
showed that as t → ∞, the following should be true
K (t) = 3R2

C ṘC → constant, RC → R̄ , and f3 → θo/λ,
where R̄ = f1 fo. Since the rate constant K is a constant
at long times, a solution of the continuity equation of
form g(ρ) h(t) is possible for the particle size distribu-
tion function.

Using the asymptotic analysis the LSW treatment
make the following predictions concerning the behavior
of the two-phase mixtures undergoing Ostwald ripening
in the long-time limit:

(a) The following temporal power laws are obeyed:

R̄(t) =
[

R̄3(0) + 4

9
t

]1/3

(30a)

θm(t) =
[

R̄3(0) + 4

9
t

]−1/3

(30b)

N (t) = ψ

[
R̄3(0) + 4

9
t

]−1

(30c)

Where ψ = θo

a
∫ 3/2

0 ρ3g(ρ) dρ
(30d)

and t is defined as the beginning of coarsening in the
long-time regime.

The prefactor 4/9 is the dimensionless coarsening
rate, and the overbar denotes an average. The exponents
are independent of the material and the history of the
sample, and the amplitudes depend on a few material
constants but are also independent of initial conditions.

(b) The asymptotic state of the system is indepen-
dent of the initial conditions. Furthermore, the particle
radius distribution is self-similar under the scaling of
the average particle size. In addition to this prediction,
an analytic form for the particle distribution function
was obtained:

f (R, t) ∝
g

(
R

R̄

)
R̄4

(31)

for late times. This time-independent distribution func-
tion g(ρ) is calculable and is shown in Fig. 1.

The LSW predicts that after long times the distribu-
tion of particle sizes, probably scaled, should reach a
universal form that is independent of all materials pa-
rameters. Qualitative features of this theory have been

Figure 1 Indicates that particle size distributions [16] from different
alloys [28–35] are broader than predicted by the mean-field theory of
the LSW model.

confirmed [36], but as shown in Fig. 1 measured parti-
cle size distributions are more broad and squat [28–31,
37–40] than the LSW theory.

5. Progress in Ostwald ripening theories:
modern Ostwald ripening theories

Soon after the publication of the LSW papers, many ex-
perimentalists rushed to test the veracity of the theory.
The experimental results have confirmed the prediction
of self-similar coarsening behavior at long-times; how-
ever, virtually none of the reported distributions are of
the form predicted by the LSW theory (see Fig. 1). The
reported distributions are generally broader and more
symmetric than the LSW predictions (Fig. 1; also see
[41, 42]).

It was realized early that a major problem with the
LSW approach was the mean field nature of the ki-
netic equation. Such a mean field approximation as-
sumes that a particle’s coarsening rate is independent
of its surroundings, i.e., a particle with nearest neigh-
bors which are larger than itself will coarsen at exactly
the same rate as if it were surrounded by particles that
were of a smaller radius. The LSW assumed that their
deterministic rate equation would be valid at an un-
specified low volume fraction of ripening phase. This
flaw (i.e. the diffusional interactions between particles)
in the LSW approach was recognized, and advanced as
the cause for the apparent disagreement between the
theoretically predicted and experimentally measured
particle size distributions [14]. The strength of the dif-
fusional interactions between particles stems from the
long range Coulombic nature of the diffusion field sur-
rounding a particle. As a result, particle interactions
occur at distances of many particle diameters and re-
strict the validity of LSW theory to the unrealistic limit
of zero volume fraction of coarsening phase. The LSW
theory was difficult to be test rigorously by experiment
or numerical simulation. Experiments typically study
volume fractions appreciably larger than zero.

Efforts to modify works on extending the theory of
LSW to nonzero Q has been attemted by many groups
[8–18, 43–46], using both analytic and numerical meth-
ods. In order to remove the zero volume fraction as-
sumption of the LSW theory, one needs to determine
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the statistically averaged diffusional interaction of a
particle of a given size class with its surroundings.
Many of the attempts to determine the statistically aver-
aged growth rate of a particle either do not account for
the long-range nature of the diffusion field surround-
ing the particle [3, 8, 10], and/or employed ad hoc as-
sumptions in an attempt to account for the diffusional
interactions between particles [4, 15]. Brailsford and
Wynblatt (The BW theory) [9], Voorhees and Glickman
(The VG theory) [13, 14], Marqusee and Rose (The MR
theory) [12], and Tokuyama and Kawasaki (the TK the-
ory)) [18], have proposed more realistic models of the
Ostwald ripening process at finite-volume fractions of
coarsening phase.

For the most part, analytic extensions have been
based either on ad hoc assumptions (the Ardell the-
ory or the MLSW theory [8, 46] and Tsumuraya and
Miyata (the TM theory) [11]), or on perturbative expan-
sions in Q, typically taken to order

√
Q (the work of

Marqusee and Rose (the MR theory) [12] and Enomoto,
Tokuyama and Kawasaki (the ETK theory) [17]). In
addition, a theory was developed by Marder [16] in
which two-particle correlations were included for three-
dimensional Ostwald ripening. All these approaches
lead to the following growth law:

R̄(t) = [R̄3(0) + K (Q)t]1/3 (32)

where R̄(0) is the average radius at the onset of coars-
ening, and the coarsening rate K (Q) is a monotonically
increasing function of Q. The particle-size distribution
function satisfies

f (R, t) ∝ g(ρ, Q)/R̄(d+1) (33)

where ρ ≡ R/R̄, d is the dimensional number. The the-
ories predict a broadening of g(ρ, Q) as the volume
fraction is increased. Unfortunately, the perturbative
theories can neither go beyond ϑ(Q) nor be applied to
two-dimensional systems, and the ad hoc approaches
contain uncontrolled approximations.

According to the author’s knowledge, two numeri-
cal studies have been conducted in three dimensions.
Voorhees and Glickman (The VG theory) [13, 14, 26]
carried out a numerical simulation, by a novel approach
based on Ewald-sum techniques, reviewed in Sec-
tion 5.7. In the following sections the some of the impor-
tant modern Ostwald ripening theories will be reviewed
in detail: in the cronological order, (a) The Ardell
theory (the MLSW theory) [8]; (b) the Brailsford-
Wynblatt (BW) theory [9]; (c) Davies-Nash-Stevens
(LSEM) theory [10]; (d) the Tsumaraya-Miyata (TM)
theory [11]; (e) the Marqusee-Ross (MR) theory [12];
(f) the Tokuyama-Kawasaki (TK) theory [18]; (g) the
Voorhees-Glicksman (VG) theory [13, 14]; (h) the
Enomoto-Tokuyama-Kawasaki (ETK) theory [17]; (i)
the Yao-Elder-Guo-Grant (YEGG) theory [15].

5.1. The Ardell (MLSW) theory (1972)
Ardell [14] established first that the LSW theory corre-
spond to the limit Q → 0 and proposed a modified LSW

particle growth rate equation for Q �= 0. Therefore, the
MLSW theory has been developed to include the ef-
fect of Q on diffusion-controlled coarsening kinetics.
In Ardell’s modified LSW theory he changed the diffu-
sion geometry and hence modified the kinetic equation.
The Gibbs-Thomson value for the solute concentration
at the particle surface is used, as in the LSW theory, but
the average solute concentration of the matrix is not set
at infinity but on the surface of a sphere centred on the
particle and having a radius essentially equal to half
the mean particle spacing. This radius decreases with
increasing volume fraction giving rise to the volume
fraction effect.

The result showed that coarsening rate increased with
volume fraction and the theoretical size distribution
broadened rapidly with increasing volume faction. The
rate of change of the average sized particles was still
proportional to t1/3 (see Equation 33). This modified
LSW theory (MLSW theory) included the LSW theory
in the limit of zero volume fraction.

This so-called modified LSW (MLSW) theory pre-
dicts that the average particle radius, R̄, should increase
with time, t , according to the equation

R̄3(t) − R̄3(0) = K (Q)t (32)

where K (Q) is a volume-fraction dependent rate
constant given by

K = 6γ DCe�
2ρ3

m

υ RB T
(34)

where

υ = 3ρ2
m

1 + 2βρm − β
(35)

β = 6Q1/3

e3Q�(Q)
(36)

and

ρm = (β2 + β + 1)1/2 − (1 − β)

β
(37)

where ρm is the theoretical relative maximum particle
size of the polydisperse assembly, and

�(Q) =
∫ ∞

8Q
x−2/3 e−x dx (38)

The parameters ρ, ρm and υ all depend upon the vol-
ume fraction (Q) of the precipitate particle through the
parameter β defined in Equation 36, which accounts for
the implicit dependence of K upon Q in Equation 34.
To facilitate the comparison between the MLSW theory
and experimental data and the effect of Q on the coars-
ening rate, it is convenient to plot the ratio K (Q)/K (0),
where

K (0) = 8γ Ce D�2

9RB T
(39)
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(a)

(b)

Figure 2 Illustrating how the rate constant, K (Q), in the MLSW theory,
for diffusion-controlled coarsening [8] varies with the volume fraction Q
of the second phase; (a) at small volume fractions, (b) at volume fractions
up to Q = 0.65.

as a function of Q. The ratio

K (Q)

K (0)
= 27

4

ρ̄3(Q)

υ(Q)
(40)

is shown in Fig. 2a for small volume fractions, and in
Fig. 2b for volume fractions up to 0.65. It is seen in
Fig. 2a that even at small values of Q, the effect of Q
is appreciable.

The coarsening rate is twice that of the LSW theory
when Q is only about 0.08, a factor of three times as
great when Q is only about 0.027, which are unreason-
able when compared with the experimental data.

Figure 3 Illustrating the dependence of the theoretical distribution of
particle sizes on the volume fraction (according to the MLSW) [8].

The MLSW theory predicts that the distribution of
particle sizes obeys the following equation

g(ρ) = −3ρ2

θ (ρ)
exp

[ ∫ ρm

0

3x2 dx

θ (x)

]
; ρ ≤ ρm

= 0; ρ > ρm (41)

where θ (ρ) = (ρ − 1)(1 − βρ)υ − ρ3 (42)

The function g(ρ) is independent of time and depends
implicitly upon Q through the Q-dependent parameters
β and υ in Equation 42.

Fig. 3 shows the predicted size distribution [g(ρ)]
as a function of Q. The greatest change in g(ρ) oc-
curs for small values of Q, as illustrated by the curves
for Q = 0.005 and 0.05. When Q is greater than 0.2,
the shape of the distribution curve becomes relatively
insensitive to Q.

Chelman and Ardell [32] have attempted to explain
the broadness of the histograms in Ni-Cr-Al and Ni-Al
alloy systems by use of the MLSW theory. They [32]
find however the absence of the volume fraction effect
on the broadness in these alloys even if the volume
fraction was between 0.09 and 0.60. They concluded
that coarsening in these cases was not controlled by the
MLSW theory but instead by the original LSW theory.

5.2. The BW theory (1979)
Brailsford and Wynbladt [9] have developed a theory
of particle coarsening, assuming that the growth rate of
the particle of one size class is a function of the entire
particle size distribution and the prevailing concentra-
tion gradient around the particle. The growth rate so
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developed was less sensitive to volume fraction than
the MLSW theory but more sensitive than the LSEM
theory (See Section 5.3).

Because of the discrepancy between the MLSW the-
ory and experiments Brailsford and Wynblatt [9] have
re-investigated the volume fraction-sensitive particle
coarsening. In this investigation the problem was di-
vided into two parts: (a) the determination of the radial
growth rate of a particle embedded in a configura-
tionally random array of particles of like nature but dif-
ferent sizes, and (b) the solution of continuity equations
for the particle size distribution, neglecting the possi-
bility of coalescence of large particles as the coarsening
proceeds.

In the BW theory the growth rate is determined by
a continuous medium having a homogeneous loss rate
and homogeneous production rate of solute atoms. The
kinetic equation is given in the form of LSW theory:

R̄3(t) − R̄3(0) = K (Q)t (32)

where

K = 6γ�DCe

RB T α

(
R̄

R∗

)3

(43)

where α and R∗ are given in Equations 31 and 49 in [9]
and R∗ is the critical radius at the onset of coarsening.

The results of BW theory are more acceptable than
those of the MLSW theory, the rate constant being in-
creased by a factor of about 3.5 relative to the LSW
approximation for a volume fraction of 0.5. The parti-
cle size distribution function is broadened but the theory
does not give as broad a range of sizes as the LSEW
theory.

Results obtained by this procedure for the asymptotic
particle size distribution, the ratio of R̄/R∗ and for the
rate constant K as function of Q are given in Figs 4 and
5, respectively. For the sake of comparison, the results
of prior inestigations of the volume fraction dependence
of the rate constant are also incorporated in Fig. 5.

Ardell and co-workers [30, 32] studied coarsening
behavior in several Ni-base superalloys in which the
ripening rate constants were determined at different
volume fractions. In the earlier work by Ardell and

Figure 4 BW distribution function g(ρ) for the MLSW model as a func-
tion of ρ for different volume fractions, Q, where ρ = R/R∗ [9].

Figure 5 The variation of the rate constant K (Q)/K (0) with volume
fraction Q in the BW Theory [9]. The curves from MLSW and Asimov
[4] models were also included for comparison.

Nicholson [30] the growth kinetics of Ni3Al(γ ′) precip-
itates in Ni-Al alloys were measured for volume frac-
tions ranging from ≈0.09 to ≈0.20. The BW model
predicts an increase in rate constant of ≈31% over this
range of volume fraction while the data fall within the
scatter band which represents about a factor of 2 in K
[30].

5.3. The LSEM theory (1980)
The central idea in the LSEM theory [10] is that of
“encounters” between growing particles. According to
the LSEM theory, if, during the coarsening process, a
significant amount of second-phase particles is present,
the interaction between the diffusion field around two
growing particles may bring their surfaces together
causing them to coalesce. When a large particle ap-
proaches, the diffusion field of the larger particle dom-
inates over that of the smaller particle, resulting in a
rapid dissolution and coalescence. Such a coalescence
of particles increases the growth rate to a small extent
and broadens the particle-size distribution, although the
rate of change of the mean particle size remains pro-
portional to the cube root of the aging time. The LSEM
theory also predicts the particle-size distribution to be
more symmetrical and broader compared with that pre-
dicted by the LSW theory. The coalescence of Ni3Al
particles in an Ni-Co-Al system, in the form of “necks”
and L-shaped particles, has been reported by Davies
et al. [10], suggesting the occurrence of the “encounter”
process.

The LSEM showed that the effect of encounters in-
creases the growth rate by a factor of approximately
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three and altered the shape of particle size distribution
making it symmetrical over the whole volume fraction
range, although the rate law is unaffected by the encoun-
tering effect. The predicted particle size distribution of
the encountering theory was compared with an exper-
imental histogram of encountered Ni3Al type precipi-
tates in a Ni-Al-Co alloy [10]. In that particular example
it was shown that peak height, broadness, and general
shape of the size distribution were reproduced by the
theory.

In the LSEM theory the kinetic equation is as follows:

R̄3(t) = R̄3(0) + 6γ�Ce Dr̄
′3

RB T Y
t (44)

where Ce is the average mole fraction of solute in the
matrix, and r̄

′3 and Y are the parameters obtained from
the LSEM analysis and depend on volume fraction of
precipitate.

Lifshitz and Slyozov show that Y must be constant
and this is also true in the LSEM theory. In the zero vol-
ume fraction approximation Y is shown to be equal to
27/4 and the mean particle radius is equal to the critical
radius. The value of Y is changed in the LSEM theory
and in principle it can not be assumed that the aver-
age particle radius and the critical radius are the same
as in the unmodified theory. With r̄

′3 = 1 and Y = 27/4
Equation 44 reduces to the familiar equation of the LSW
theory but in the LSEM theory the r̄

′3 and Y values have
to be determined.

In Fig. 6 Y is plotted as a function of Q. It can be seen
that Q diminishes rapidly from its value of 27/4 = 6.75
at Q = 0 initially and then decreases more slowly. Fig. 6
also shows the ratio of the rate constant K for a vol-
ume fraction Q [K (Q)] to that for Q = 0 [i.e. K (0)];
K (Q)/K (0). This ratio is a direct measure of the degree
to which encounters increase the rate of coarsening. In-
spection of Equation 44 shows that this ratio is given
by 6.75 r̄

′3/Y , 6.75 being Y for Q = 0, for which value
r̄ ′ = 1. It can be seen that the coarsening rate varies by
a factor of a little less than three over the whole volume
fraction range.

Figure 6 The effect of volume fraction Q on the parameter Y and the
ratio of the rate constant K (Q)/K (0) for the LSEM model [10].

Figure 7 LSEM particle size distribution as a function of precipitate
volume fraction Q [10].

Assuming the effective diffusion coefficient D in the
growth-rate equation (Equation 44) may be given by an
Arrhenius type equation using the LSEM analysis

Log

[
K T

Ce

]
= Log

[
6γ�2r̄2 Do

RBY

]
− A

2.3RB T
(45)

Thus plots of Log(K T/Ce) versus 1/T yield the acti-
vation energy A for coarsening from the slope and Do
from the intercept.

Fig. 7 shows the particle size distribution function for
various values of Q predicted by the LSEM theory. The
effect of increasing volume fraction is to progressively
flatten and broaden the distribution and skew it in the
opposite sense to the unmodified distribution.

The advantage of the LSEM theory over the MLSW
theory is that its modification of the LSW theory is
properly incorporated into the statistical framework of
the theory with no implicit statistical assumption that
can not be given some justification. We also note that
the LSEM theory gives considerably broader relative
size distributions than the MLSW theory and this also
accords better with experiment.

5.4. The TM theory (1983)
Tsumuraya and Miyata [11] developed six models for
steady-state particle coarsening in order to explain the
shapes of experimentally obtained particle size distribu-
tion histograms. The models are developed for coarsen-
ing process controlled by volume diffusion compelled
by reduction of interfacial area between particles and
matrix. The particle size distributions and coarsening
rates are presented for each model. The basic t1/3 rate
law is maintained in all models.

In the TM treatment it is dealt with the concentration
gradients around the individual particle depending on
the types of spatial distribution of particles in solids.
The particle size distributions and growth rates of av-
erage particle size are also derived. The growth rate of
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average particles can be given by

dρ

dτ ′ = −p = 1

3

[
ρ − 1

ρ3
f ′υ − ρ

]
(46)

where ρ = R/R∗, R∗ is the critical radius for ripening,
f ′ is a function in the concentration gradient in the
present model. Ardell [8] also used the critical radius
instead of the average radius R̄, which is the one which
is neither dissolving nor growing during coarsening and
increases with time.

τ ′ = ln
(
R∗3) (47)

υ = 3ϑ D�

CB

dt

dR∗3
(48)

The expression for ν contains a parameter ϑ which is
given by

ϑ = 2γ�Ce

RB T
(49)

where CB is the atomic fraction of the solute atoms
dissolved in the precipitates.

The normalized equation to represent the particle size
distribution h(ρ) is given by

h(ρ) = e−�

p
(50)

where

� =
∫ p

0

1

p
dρ (51)

and the equation for p has been given in Equation 46.
The rate law of the average particle size can be

expressed by

R̄3(t) − R̄3(0) = K (Q)t (32)

where K (Q) is the rate constant given by

K (Q) = 3ϑ D�ρ̄3

υ
(52)

The rate of the average particle size is proportional to
the cube root of time (i.e. t1/3) in all the present mod-
els. This is caused by employement of the linearized
Gibbs-Thomson equation and the volume diffusivity
at steady-state condition. The ratio of K (Q) to K (0)
becomes

K (Q)

K (0)
= 27

4

ρ̄3

υCB
(53)

since

K (0) = 4ϑ D�CB

9
(54)

The volume fraction effect is physically due to the in-
teraction between the particles through the distance
between the particles, i.e. statistical nearest neighbor
effect. The thickness of the matrix influences the in-
teraction between the particles. The interaction leads

Figure 8 The changes of the ratios K (Q)/K (0) in each TM model [11]
for different volume fraction ranges, Q.

to an increase of the coarsening parameter K (Q)/K (0)
which is shown in Fig. 8.

In conclusion, in the TM theory six models have been
developed, which incorporate both the diffusion geom-
etry and the volume fraction of the particles to explain
the broadness of the experimental size distribution his-
tograms. The models are produced so as to reflect the
real spatial particle dispersion. One of the six models
is a modified version of Ardell’s model [8].

Tsumuraya and Miyata [11] compared the avail-
able experimental distribution histograms at steady-
state condition controlled by volume diffusion and have
classified them into two of the proposed models. Model
III has explained the broadness of the published his-
tograms in the Ni-Al : Q > 0.1 and Ni-Cr-Al : Q > 0.2
alloys. The spatial distribution of precipitates in these
alloys has shown a periodic array of precipitates in
cube directions. Model VI, where each particle with
various sizes distributes randomly so particle interpen-
etration is excluded, has also explained the broadness
of size distribution histograms in Ni-Al : Q < 0.1, Ni-
Cr-Al : Q < 0.2, Fe-Ti-Si : Q = 0.045–0.06, Co-Ni-Cr-
Ti : Q = 0.10–0.17 and Ni-Si : Q = 0.045 alloys. These
are alloys with smaller volume fractions of precipitates.

5.5. The MR theory (1984)
The purpose of this work [12] is to extend the theory of
Ostwald ripening to nonzero volume fractions as other
modern theories. Using studies in the theory of diffu-
sion controlled reactions [47–51] Marqusee and Rose
[12] derived a growth law for a particle in the presence
of other particles and solve for the asymptotic distri-
bution function by the techniques developed elsewhere
[52]. It was found that the distribution function assumes
a unique asymptotic form independent of initial condi-
tions but dependent on the final equilibrium volume
fraction. The exponents in the temporal power laws
are unchanged by the competitive effects but the am-
plitudes have significant volume fraction dependence,
at volume fractions as small as 1%. The growth law
and the amplitudes for the temporal power laws deviate
from their values in the limit of zero volume frac-
tion. Overall, the distribution function is broadened by
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the competition, which leads to more rapid coarsening
rates.

To develop a growh law for this work let us consider
the particles of the minority phase as spherical particles
of radius R surrounded by the majority phase which is
characterized by the concentration field C(r, t). The ra-
dius of a given particle increases by the incorporation
of mass into it and, by mass balance, there is an asso-
ciated decrease in the concentration field. The growth
rate of a particle is calculated under the assumption that
it is diffusion limited and stationary. In the limit of zero
volume fraction of particles, the dilute limit, competi-
tion between particles can be neglected and we need to
consider only one particle. The growth rate is obtained
by solving for the steady state flux into (or out of) a
particle, subject to the constraint that the interface is at
local equilibrium. Thus the concentration field satisfies
the following equation

Do∇2C(r, t) = 0 (55)

and the boundary condition

C(r, t)|R = Ceq(R) (56)

Where R is the radius of the particle with center at the
origin, Do is the diffusion coefficient for the concentra-
tion, and Ceq(R) is the equilibrium concentration asso-
ciated with a particle of radius R. For a concentration
of Ce at infinity, the solution to Equation 55 is

C(r, t) = Ce

[
1 − R

r

]
+ Ceq(R)

R

r
(57)

For a spherical particle and ideal solution, the R de-
pendence of Ceq(R) (i.e. the Gibbs-Thomson equation)
is

Ceq(R) ∼= Ceq(∞)

[
1 + lC

R

]
(58)

with lC = 2γ�/RB T (see Equation 2)

where Ceq(∞) is the concentration in equilibrium with
a macroscopic particle.

The presence of a particle at the origin creates a long
range perturbation in the concentration field, which de-
cays as 1/R, and which produces a nonanalytic density
dependence in the growth law for the case where com-
petition among particles are considered.

The total flux mass into a single isolated particle is

JT = 4π Do[Co − Ceq(R)] (59)

A variety of techniques have been used in the theory of
diffusion controlled reactions to treat this case of com-
petition among particles. Here a multiparticle scattering
(MPS) approach, which have been applied by a number
of authors [48–51], is used in this work. These results
are generalized to the case of a distribution of particle
sizes and the boundary condition given in Equation 56.
In this approach, an equation is written for the micro-
scopic concentration field for an ensemble of particles
located at positions {ri }. This equation is then aver-
aged with respect to the position of the particles and

compared to the macroscopic equation in the form of a
multiple scattering series, from which the growth law
is obtained.

Rather than solve the steady state diffusion Equa-
tion 55, subject to the boundary condition Equation 56,
a set of sink terms is introduceed, one at each position of
the particles. The microscopic concentration field [12]
obeys the equation

Do∇2C(r, t) = φ(r ) +
N∑

i=1

Biδ(r − ri ) (60)

where the set {Bi } denotes the strength of the sinks
located at positions {ri } and are functions of the parti-
cle positions and their radii, φ(r ) is an auxiliary field
function introduced to account for external boundary
conditions.

The growth rate V (R1, C̄) for a particle of radius R
in the present treatment is

V (R1, C̄) = Ṙ

= Do�

R

[
C̄ − Ceq(R)

][
1 + R

√
4πρ〈R〉] (61)

where ρ〈R〉 is the average number density with respect
to the particle size distribution.

The competition increases the diffusion controlled
reaction rate and the deviation from the dilute limit
goes as the square root of the density.

From the growth law (see Equation 61), it is possible
to derive the asymptotic distribution function for parti-
cle sizes. Here a time scaling technique is used, which
allows the extraction of the temporal power laws; the
reduction of the problem to the solution of a simple
first order differential equation; and imposition of self-
consistent constraints on the zeroth and first moments
of the distribution function. It is here assumed that the
distribution function n(R, t) for the number of particles
with radius R per unit volume can only be changed by
growth or dissolution of particles. In this case, it must
obey a continuity equation in R space,

∂n

∂t
(R, t) + ∂

∂ R
V [R, C̄(t)]n(R, t) = 0 (62)

where V [R, C̄(t)] is given by Equation 61. It is also as-
sumed that the particles are stationary. Note that n(R, t)
is normalized to the density of particles and not to one.
Thus the density is

ρ(t) =
∫ ∞

0
n(R, t) dR (63)

and it changes with time. Nucleation is neglected in
Equation 62, since it is concerned with the late stages
of phase seperation.

Before introducing the time scaling, we transform to
the reduced variables

a = R/ lC ; τ = t Do�Ceq(∞)
/

l2
C

σ (τ ) = C̄(t) − C̄eq(∞)

C̄eq(∞)
(64)
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The distribution function F(a, τ ) in the long time limit
in the scaled form is

F(a, τ ) = τ−y Fo(z) (65)

where

z = aτ−x (66)

where the exponents x and y are variables and are deter-
mined elsewhere [12]. In the long time limit, complete
phase separation must be reached. This implies that
σ (τ ) must vanish in this limit. To satisfy this condition
for the approach to equilibrium, we should have

∫ ∞

0
z3 Fo(z) dz = 1 (67)

which serves as a normalization condition. It can be
determined that the supersaturation σ (τ ) decay to zero
as τ−x . Thus in the late stages of phase separation

σ (τ) = σ1τ
−x ; 〈a〉 = aoτ

x ; ρ̄(τ ) = ρoτ
−3x (68)

So σ1, ao and ρo are defined in Equation 68. To obtain
the distribution function, the amplitude for the decay
of supersaturation σ1 should be determined. Also the
amplitudes for the average radius 〈a〉 and density of
particles ρ̄(τ ), ao and ρo, should be calculated self-
consistently. The constraints onσ1 yield its value as well
as the cutoff zo where the particle distribution vanishes.

Therefore, the distribution function can be written as

Fo(z) = Co

(zo − z)α′
1(

z + 3
/

z2
o

)β ′ exp

[
− δ′

zo − z

]
z ≤ zo

= 0 z > zo (69)

where zo is the cutoff value where the particle size dis-
tribution vanishes. α′, β ′ and δ′ are function of zo,

α′ = 2 + 3zo
(
6 + z3

o

)
(
z3

o + 3
)2 ; β ′ = 1 + 27(

3 + z3
o

)2 ;

δ′ = 3z4
o(

3 + z3
o

) (70)

and Co is the normalization constant determined by
Equation 3.17 in [12].

The results [12] for zero volume fraction and the low-
est order correction which may be obtained analyically
(in the dilute limit) are:

zo =
(

3

2

)1/3

; α′ = 11

3
; β ′ = 7

3
; δ′ =

(
3

2

)1/3

(71)

which are agreement with previous results [13, 14, 52].
This yields in the dilute limit the power law

〈a〉 =
(

4

9

)1/3

τ 1/3; σ (τ ) =
(

9

4

)1/3

τ−1/3;

ρ̄(τ ) = 1.99τ−1 (72)

Note that the supersaturation σ (τ ) and the average ra-
dius 〈a〉 are the inverse of each other. The inverse of
the supersaturation is by definition the critical radius,
above which particles grow and below which particles
dissolve. Thus we obtain the well-known result that the
average radius is equal to to critical radius. This will not
be true at finite volume fractions. From the calculations
[12] the following parameters can be obtained

σ1 =
(

9

4

)1/3[
1 − 0.815

√
Q∞ . . . .

]

zo =
(

3

2

)1/3[
1 + 1.222

√
Q∞ . . . .

]
(73)

ao =
(

4

9

)1/3[
1 + 0.740

√
Q∞ . . .

]

where Q∞ is the equilibrium volume fraction of the
second phase particles. It can be seen in Equation 73
that the leading order corrections are all of the order
of the square root of the volume fraction. They predict
that the average radius grows more rapidly, that the
distribution function broadens, and that the decay rate
of the concentration decreases. Also, the average radius
and the critical radius are no longer equal.

The analytic form of the distribution function (Equa-
tion 69) was calculated for volume fractions up to
Q∞ = 0.15 by the iterative approach. The resulting dis-
tribution function is plotted for a series of volume frac-
tions in Fig. 9. Note that since the distribution function
is normalized according to Equation 3.17 in [12], the
curves have very different heights. The effect of com-
petition shifts the maximum of the distribution function
to higher values of z and broadens it. We see that there
are significant changes in the scaled distribution func-
tion at very low volume fractions. Tradationally, the
distribution function when determined experimentally
[23] is reported in the units of the average radius and

Figure 9 Plots of the scaled particle size distribution function Fo(z)
versus the scaled radius z = aτ−1/3 in the MR model (Plots are given
for equilibrium volume fractions Q∞ = 0 [12], Q∞ = 0.01 (- -), Q∞ =
0.05 (-·-·), and Q∞ = 0.1 (. . .) [12].
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Figure 10 Plots of the reduced coarsening rate ξ [=〈a(Q∞)〉3/〈a(0)〉3]
versus the volume fraction Q∞ (12).

normalized by the density of particles. The differences
in the distribution function at various volume fractions
will appear smaller when presented this way than in
Fig. 9.

To see clearly the increase in the coarsening rate,
Fig. 10 is plotted in which the cube of the average radius
divided by its dilute limit ξ (Q∞):

ξ (Q∞) = 〈a(Q∞)〉3

〈a(0)〉3
(74)

The cube of the average radius is linear in time and is a
frequently measured characteristic of the distribution.
The greatest increase occurs in the first few volume
percent, followed by a slower increase.

5.5.1. Comparison of the MR theory with
the other theories

In the MR theory the effect of competition among parti-
cles causes a significant increase in the coarsening rate.
In this model, as in the dilute case, the average radius
grows as t1/3 and the density of particles of the minority
phase decreases as t−1. The changes due to competi-
tion appear in the amplitudes for the temporal power
laws and the first order deviations from their dilute val-
ues go as the square root of the volume fraction

√
Q∞.

Other theoretical works such as TM, MLSW, BW the-
ories on the coarsening at finite volume fractions has
approached the problem of competitive effects in a vari-
ety of ways. Contrary to the MR theory, they found that
the coarsening rate could either increase or decrease as
volume fraction increased depending on the configura-
tion of particles being considered. These results are due
to the particular configurations they considered.

The TM and MLSW theories have proposed ad hoc
corrections to the growth law that permit solutions for
the asymptotic distribution by the method of LSW the-
ory. These approaches assume the flux into or out of
a particle is increased at finite volume fractions and
consequently find an increase in the coarsening rate.
These theories predict increases that are much larger
than the MR theory. The results for the BW theory
are qualitatively similar to the MR theory but differe
quantitatively. The BW model derives a density depen-
dent growth rate by an “effective medium” argument
and solve for the asymptotic distribution function by

the technique of LSW. No analytic first order correc-
tions to the time dependence of either the density or
average radius is given. The approximations involved
in the derivation of the growth law in the BW work
are uncontrolled and for mathematical simplicity, and
ad hoc interpolation formula is used. None of the pre-
vious theoretical work has approached the problem for
a systematic statistical mechanic point of view as at-
temted in the MR work.

5.6. The TK theory (1984)
Tokuyama and Kawasaki [18] have developed a new
statistical-mechanical theory of diffusion-controlled
particle ripening for finding the system of kinetic equa-
tions at the non-zero volume fractions of second phase
particles, to order

√
Q. They pointed out that the col-

lisionless drift process and soft-collision process play
important roles for competitive growth in coarsening.
The soft-collision process has been studied by the none
of the previous authors except the MR and TK theo-
ries. The soft-collision process originates from the in-
teractions between particles which are immobile but
are correlated. Such correlations are generated by long
time cumulative effects of particle interactions through
the diffusion field. This is analogous to the well-known
correlations between particles generated by intermolec-
ular forces in gas dynamics.

They considered a three dimensional classical sys-
tem of two constituents: supersaturated solution and
spherical second phase particles with stationary posi-
tions. Such a system has two characteristic lengths; the
mean particle radius R̄(t), and The screening length
l ≡ 1/[4πn(r )R̄(t)]1/2, where n(t) is the number of par-
ticles per unit volume. It is assumed that the particle vol-
ume fraction Q(t) ≡ [4πn(t)R̄(t)3/3] is small so that

R̄(t)

l(t)
= [3Q(t)]1/2 � 1 (75)

Then, the change of the radius Ri (t) of the i th particle
or growth rate is given by

∂ R

∂t

4

3
π Ri (t)

3 = −4π DMi (t) (76)

where

Mi (t) = Ri (t)

[
lC

Ri (t)
− �(t)

]
−

N∑
j �=i

M j (t)

|Xi − X j | (77)

where D is the diffusion coefficient, lC is the capillarity
length (see Equation 2), N the number of second phase
particles and Xi the position vector of the center of the
i th particle. �(t) represents the degree of the super-
saturation and its time evolution is determined by the
conservation law as

q̇(t) + �̇(t) = 0; q(t) =
N∑

i=1

[
4π R3

i (t)
/

3V
]

(78)

where V is the volume of the system and dots denote
time derivatives. The first term of Equation 77 predicts
that if Ri > lC/�, the particle grows and if Ri < lC/�,
it dissolves, leading to a critical radius Ro = lC/�. The
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second term on Equation 77 represents the cooperative
effects among particles.

An advantage of the TK model is that in the ther-
modynamic limit, i.e., N → ∞ and V → ∞, N/V →
constant, it is possible to explicitly evaluate the mag-
nitude of the distribution functions of f (R, t). In the
TK model it was shown that there are two characteris-
tic stages of coarsening, depending on their space-time
scales; an intermediate stage and a later stage. In both
stages, new equations were derived to order Q1/2. These
equations have two terms at order Q1/2; a collisionless
drift term and a collision term. It is also shown that in
both stages that the mean particle radius increases as
the cube root of the time (t1/3). A scaling behavior of
the distribution function f (R, t) was observed to exist
in both stages. Especially, in the late stage this scaling
behavior was shown to coincide with that obtained by
the LSW in the limit Q → 0. In the intermediate stage
during a first-order process where Q = Q(t), the parti-
cle radius distribution is not time independent but does
obey a scaling relationship and more importantly R̄ is
proportional to t1/3. An experimental result [53] has
shown that R̄ is proportional to t1/3 when Q = Q(t) al-
though the results are not completely convincing due
to experimental error.

5.7. The VG theory (1984)
Voorhees and Glickman [13, 14] developed a theory
describing the simultaneous growth and shirinkage of
a randomly dispersed phase in a matrix, with the sec-
ond phase providing the only sources or sinks of solute
and/or heat, as is the case during Ostwald ripening.
This theory provides a description of the interparticle
diffusional interactions which occur during coarsening.
Furtheremore, since the theory was developed in a form
which permits the coarsening rates of large numbers of
particles to be calculated, it is also possible to deter-
mine the influence of interparticle diffusional interac-
tions on the collective behavior of a system of ripening
particles. The theory is based on a quasi-steady-state
approximation to the time-dependent diffusion equa-
tion, i.e. the multiparticle diffusion (MPD) solution (see
Section 3.1) is based upon the time-dependent Laplace
equation.

The MPD problem involves the simultaneous emis-
sion and absorption of diffusant at second phase do-
mains distributed in a matrix. For the description of
MPD as general as possible, the diffusion equation is
expressed in terms of dimensionless variables (see Sec-
tion 2.2). All space variables are nondimensionalized
by a characteristic distance, lC . The value of the dif-
fusion field is denoted by θ (r ), where in general, θ (r )
can be a dimensionless pressure, temperature, solute
concentration, etc depending on the problem.

A description of the slowly changing diffusion field
in a medium consisting of N sources or sinks at fixed
locations can be found by solving a form of Poisson’s
equation (see Section 3.1):

∇2(θ )=
N∑

i=1

− 4π Biδ(r − ri ) (see Equation 12)

where θ is a dimensionless temperature or concentra-
tion (see Equation 4) r is a dimensionless vector locat-
ing the arbitrary field point, ri is a dimensionless vector
which locates the center of the i th particle, δ is a Dirac
delta function, and Bi is a constant whose magnitude is
a measure of the strength of the point source (Bi > 0)
or sink (Bi < 0), N is the number of sources or sinks
in the system. All quantities which have units of length
are scaled by the capillary length lC (see Equation 2).

θ (r ) represents some scalar potential within the dif-
fusing medium resulting from the contribution of N
point sources and sinks. It is therefore possible to apply
the methods of potential theory to simplify the problem.
Therefore, θ (r ) will be termed simply the potential, or
dimensionless temperature or solute concentration as
the case requires. A general solution to Equation 12 is
the linear combination,

θ (r ) = Bo +
N∑

i=1

Bi

|r − ri | (see Equation 13)

where Bo is some constant reference potential which,
in general, is nonzero. Equation 13 indicates that each
source and sink contributes to the total temperature/
concentration field at a given point in the matrix.

In applying the VG theory to the multi-particle diffu-
sion case the Ostwald ripening problem is solved using
the diffusion field within the matrix:

�2θ = −4π Biδ(r − ri ) (79)

The location of the particles within both the translated
and reference unit cells are specified by basis vectors
of the type ri and r j which locate the centers of the i th
and j th particles, respectively.

With the boundary conditions

θ j = − 1

R j
for j = 1, . . . , N ′and (80)

N∑
i=1

Ḣ i = 0 (81)

where θ j is the dimensionless interfacial potential for
the j th particle of dimensionless radius R j ; Ḣ i is the
rate of dimensionless entalphy (or solute) loss or gain
from the i th particle, where H = H∗/ l3

C L for the solid-
liquid mixtures, H = H∗�/ lC for the solute diffusion
case and H∗ is a dimensional entalphy or solute content
of a particle. L is the latent heat of fusion.

The better idea about coarsening can be gained by
considering a two-particle case. The two-particle ba-
sis allows the problem to be solved analytically. For
the VG model The following simplified two-particle
kinetic equation can be written

Ṙ1 = R−2
1


 R1 − R2

R2 + R1 + 2R1 R2

ao
(Dc − ϑc)


 (82)

where R1 and R2 are the dimensionless radii for the
particles 1 and 2, respectively. Ṙ1 = dR1/dt . The terms
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DC and ϑC are defined in bracketed expressions ap-
pearing in Equations 25 and 26 in [13]. Dc function
represents the potential at the center of the j th parti-
cle arising from its image sources or sinks located in
the displaced unit cell. The term Dc therefore repre-
sents the self-interaction of the j th particle with the
lattice of its images. As a result Dc depends only on the
Bravais lattice chosen to translate the basis, and for a
given Bravais lattice, Dc is a constant independent of
the particle basis. The ϑi j determines the magnitude of
the interaction between the i th and j th particles. ϑc is
a constant once the locations of the particles within the
unit cell are chosen. Specifically both Dc and ϑi j terms
vary as a−1

o (ao is the lattice parameter constant), and
in the limit ao → ∞ the interaction terms vanish.

The concept of a “Madelung’s constant” for a given
Bravais lattice is applicable to the coarsening problem
[19]. In the simple two-particle basis, the generalized
Madelung’s constant M(αi , βi , γi ) = ϑC − DC , where
αi , βi , γi denote the components of the basis vector lo-
cating the i th particle. Thus, Equation 82 can be written
in terms of a generalized Madelung’s constant as

Ṙ1 = 1

R2
1


 R1 − R2

R1 + R2 − 2R1 R2
M(αi , βi , γi )

ao


 (83)

It is possible to compare the coarsening rates predicted
by Equation 83 to those predicted by the LSW theory.
In the dimensionless form the LSW coarsening rates
are defined by [23]

ṘLWS
1 = 1

R1

[
1

R̄
− 1

R1

]
(84)

where R̄ is the average particle radius. If R1 is larger
than R̄ then the particle will grow (Ṙ1 > 0), and if R1
is less than R̄, then the particle will shrink (Ṙ1 < 0).
The LSW coarsening rates can be compared with the
“two-particle” coarsening rates predicted by a two-term
expansion of Equation 83, namely

Ṙ1 = 1

R2
1

[
R1 − R2

R1 + R2

{
1 + 2R1 R2

(R1 + R2)ao M

+
(

2R1 R2

(R1 + R2)ao
M

)2

+ · · · H.O.T .

}]
(85)

The relative difference in the coarsening rates predicted
with Equation 85 from the LSW coarsening rates is to
first order

Ṙ1 − ṘLSW
1

ṘLSW
1

∼= 2R2 R1 M

(R1 + R2)ao
(86)

For any given particle arrangement in the unit cell, as
ao → ∞ (implaying that the volume fraction vanishes)
the RHS of Equation 86 also approches zero. This result
is consistent with the fact that the LSW theory is valid
only in the asymptotic limit of zero volume fraction.
It is also interesting to point out in Equation 86 that

if the radius of i th particle approaches zero, then the
LSW coarsening rates are again recaptured. This im-
plies that the coarsening rates of small particles (on the
dimensionless length scale) are not strongly influnced
by neighboring particles, even though the distance be-
tween the particle centers might itself be small. A final
point here is that M(αi , βi , γi ) > 0, implying that the
coarsening rate of either particle is always faster than
that predicted by LSW.

In conclusion, the VG theory is consistent with the
LSW theory at zero volume fraction, and at the higher
volume fractions an analysis carried out on a two-
particle basis indicates an increase in the coarsening
rates of both particles. The coarsening rates of small
particles are not expected to be affected strongly by
diffusional interactions. Small particles should coarsen
at rates close to those predicted by the LSW theory,
even at high volume fractions.

5.7.1. Comparisons of The VG theory with
MLSW, LSEM and BW theories

As discussed in previous sections, the theories of
MLSW, BW, and LSEM predict the steady-state dis-
tributions at non-zero volume fraction. A precise com-
parison between the theories of LSEM, BW and the VG
is possible at a volume fraction of 0.1. The overall func-
tional forms of the distributions are similar. All three
predict a steady-state distribution which is broader, less
peaked, and more symmetric than LSW. However, there
are differences between each of the predicted curves.
The VG theory appears to predict a distribution with a
greater peak height than those of BW or LSEM. How-
ever, The VG theory agrees with the BW theory on the
location of the foot of the probability distribution at the
high-ρ end and disagrees with LSEM. At higher volume
fractions direct comparisons are not possible; however,
it appears that the VG predicts a broader distribution
with a lower peak height than LSEM and BW. Gener-
ally, the VG theory predicts steady-state distributions
which are more peaked at low volume fractions, and
which are broader at high volume fractions than those
predicted by LSEM and BW. For the comparison of
these theories, the dependence of the rate constant on
the volume fraction is established in Fig. 11; in this
figure the rate constants predicted by the theories of
Ardell (MLSW), BW, LSEM, and GV are shown as a
function of the volume fraction. The rapid increase in K
predicted by the MLSW model is based upon an unreal-
istic statistically averaged rate constant. The curve for
the LSEM is lower than the VG which is attributable
to the improper assumption used by the theory [13].
The VG theory indicates that coarsening rates are no-
ticeably different from the LSW predicted coarsening
rates even at volume fractions as low as 0.05. It is there-
fore unlikely that the rate constants predicted by the
LSEM can be applied at non-zero volume fraction. In
the range 0 < Q < 0.35 the VG and BW theories pre-
dict rate constants which differ by 50%, with the BW
theory predicting a higher sensitivity of the rate con-
stant on volume fraction. A second major difference
between these two theories is the predicted functional-
ity of the rate constant with volume fraction in the range
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Figure 11 The VG rate constant ratio K (Q)/K (0) versus the volume
fraction Q. For comparison LSW, LSEM, BW, and MLSW curves are
also included [14].

Q > 0.35, where the VG theory indicates that the rate
constant is a more sensitive function of volume fraction
than the almost linear form of the BW theory.

5.7.2. Computer simulations for the
multiparticle diffusion (MDP)
problem: application of computer
simulations on the VG theory

A critical test of the numerical approach for the VG the-
ory was made [14] by comparing the coarsening sim-
ulation in the limit of zero volume fraction to the ana-
lytic results of the LSW theory. Since the LSW theory
employs a continuum statistical mechanical approach,
the theory makes specific analytic predictions on the
collective behavior of coarsening systems. In contrast,
the VG theory employs a discrete approach to deter-
mine the diffusion field within a coarsening medium,
and then uses the computer to investigate the collective
behavior of the system. Therefore, the LSW theory pro-
vides an important test for establishing the simulation’s
ability to model the behavior of coarsening systems. In
this simulation work, the statistical properties which
are examined include:

(i) the growth of the cube of the average particle ra-
dius; the LSW theory predicts the following functional
form

R̄3(t) − R̄3(0) = K (0)t

where R̄(t) is the average radius at time t , R̄(0) is the
average particle radius at time t = 0, K is the rate con-
stant, the value of which at Q = 0 is 4/9, and

(ii) the appearance of a unique time-invariant particle
radii distribution when the particle radii are plotted in

Figure 12 Steady-state analytical distribution from LSW theory and
simulation derived histogram at Q = 0 for the VG model. General agree-
ment is satisfactory; noise in histogram near the tails of the distribution
occur because of the finite number of basis particles used in the simula-
tion [14].

terms of ρ = R/R̄. In this calculation the volume frac-
tion of phase was set equal zero. The steady-state his-
tograms for the VG theory, along with the analytic LSW
distribution, is shown in Fig. 12. There is a little differ-
ence between the computed steady-state histogram and
the distribution predicted analytically by LSW.

The local particle environment is responsible for
the hills and valleys of R̄3 plot over many time-steps.
The peaks of the steady-state histograms are associated
with the influence of particle interactions on the par-
ticle trajectories in ρ-space. This explains the relative
smoothness of the LSW steady-state histogram shown
in Fig. 12.

Fig. 13 shows the cube of the average particle size vs
time. The growth rate of the cube of the average particle
radius is linear in time, and the regressed rate constant
is 0.4397, which is within 1.0% of the 0.4444((∼=4/9)
slope predicted by the LSW theory.

The dependence of the rate constant, K , on volume
fraction is illustrated in Fig. 14, where K (0) = 4/9 is
rate constant of LSW. The small particle interactions
at the lower volume fractions resulted in small stan-
dard deviations of the rate constant. Also evident is
the factor-of-four increase in the rate constant result-
ing from an increase in the volume fraction from 0
to 0.5. Hence, it is concluded that the enhanced diffu-
sional interactions which occur at finite volume frac-
tions result in larger rate constants for the coarsening
system than under conditions appropriate to the LSW
theory.
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Figure 13 Cube of the average particle size versus time with Q = 0. The
theory line indicates slope of 4/9, which agrees closely with simulation
data) [14].

Figure 14 The rate constant ratio, K (Q)/K (0), versus Q, where
K (Q)/K (0) is the VG simulation result divided by LSW rate constant
K (0). The error bars were computed as the standard deviation. This figure
also illustrates that there will be a significant increase in the coarsening
rate of the mixture as Q increases [14].

Fig. 15 shows the steady-state distributions at vari-
ous volume fractions. This figure shows that interpar-
ticle diffusional interactions play a major role in de-
termining the form of the steady-state distribution at a
given Q.

5.8. The ETK theory (1986)
Enomoto et al. [23] (the ETK theory) investigated the
effect of a finite volume fraction of precipitate parti-
cles on the Ostwald ripening on the basis of a statis-
tical theory. This theory takes into account both the
competitive growth and so-called soft-collision effect
of particles arising from statistical correlations among

Figure 15 VG steady-state distribution at various volume fraction Q.
This figure shows that interparticle diffusional interactions play a major
role in determining this distribution at a given Q [14].

them because the soft-collision processes are impor-
tant in coarsening as anticipated by the TK theory [24].
In this theory a second-order differential equation for
the single particle distribution function obtained from
a Fokker-Planck type equation was used numerically
and stress the importance of the soft-collision process
in ripening.

Let p(ρ) denote the relative particle size distribution
function withρ ≡ R/R̄(t), where R is the particle radius
and R̄(t) its average. p(ρ) then obeys the following
second-order differential equation, to order

√
Q

(
4 + ρ

d

dp

)
p(ρ)

= (3lC D/K )x

[
B(ρ) −

√
3Q/m3

d

dp
E(ρ)

]
p(ρ)

(87)

and

R̄3(t) − R̄3(0) = K (Q)t (see Equation 32)

where K is a coarsening rate given by

K = lC D Lim
p→0

p(ρ)/ρ2 (88)

Here D is the diffusion coefficient, lC the capillarity
length and mn the n th moments defined by

mn = 〈ρn〉 =
∫

ρn p(ρ) dρ (89)

The averaged source/sink strength B(ρ) is given by

B(ρ) = −λ(ρ) −
√

3Q/m3[v(ρ) + c(ρ)] (90)

with collisionless drift terms

λ(ρ) = 1 − ρ (91)
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v(ρ) = ρ(m2 − ρ) (92)

and the soft-collision term

c(ρ) = d(ρ) − 〈d(ρ)〉ρ (93)

d(ρ) = ρλ(ρ)
[√

1 + a+ − 1
]−dE(ρ)

d(ρ)
− E(p)/ρ (94)

where the kinetic coefficient E(ρ) is given by

E(ρ) =




[
(b+ + a+b−/a−)

(
1 − √

1 − a−
)]

+ (b+ − b−)
(√

1 + a+ − 1
)

× (a+ + a−), if a− ≤ 1

[b+ + a+b−/a+ + (b+ − b−)]

× (√
1 + a+ − 1

)
(95)

Here a∓ and b± are functions of ρ defined by Equa-
tions 1.12 and 1.13 in [17]. The effect of the collision-
less drift processes is analyzed below, to order

√
Q

The coarsening rate K (Q) for the collisionless drift
processes is given by

K (Q) = 3lC D
(
1 +

√
3Q/m3ρ

2
c

)/
2ρ3

c (96)

where ρc is a cut-off, and is given by a solution of the
equation

ρc − 3 +
√

3Q/m3ρc(ρc − 2m2) = 0 (97)

The relative particle size distribution p(ρ) is

p(ρ) =



Nρ2(ρc − ρ)−a(ρo + ρ)−b

× exp[−c/(ρo − ρ)] ρ < ρc

0, ρ ≥ ρc

(98)

Here

ρo = 3lC D
/(

Kρ2
c

)
(99)

where

a = 2 + 3ρc(ρc + 2ρo)
/

(ρc + ρo)2

b = 1 + 3ρ2
o

/
(ρc + ρo)2 (100)

c = 3ρ2
c

/
(ρc + ρo)

and N is the normalization constant determined by [17]
as

N = 3ρa−2
c ρb−1

o exp(c/ρc) (101)

The relative size distribution function p(ρ) is calculted
from Equations 98, 96, 97 and 99 by using iterat-
ing m2 and m3 values. Using this iterative approach
Enomoto et al. [17] found that in the dilute limit Q → 0,
3lC D/K = 27/4 and ρc = 3/2 from Equation 96 and
97. Since these values are the same as those found in

Figure 16 The ETK distribution function p(ρ) with only drift process at
Q = 0.001, 0.01, 0.1. LSW result is also included for comparison [17].

the LSW theory, the distribution function (Equation 98)
reduces to that obtained by LSW.

5.8.1. Comparison of the ETK model with
the LSW, BW, MR, TK and MLSW
theories

Fig. 16 shows the normalized scaled particle size dis-
tribution function p(ρ) (with only the drift process)
against ρ for a series of different volume fraction Q (i.e.
for Q = 0.001, 0.01, 0.1). The effect of Q-dependence
collisionless drift processes,

√
3Q/m3 v(ρ) in Equa-

tion 90, are to lower and to broaden the peak of p(ρ) as
compared with that of the LSW theory. Fig. 17 shows
the particle size distribution functions for the ETK the-
ory at Q = 0.1 and Q = 0.35, respectively, which are
compared with the results obtained in other theories
and in the LSW theory. These theories except the Ardell
theory and the LSW theory are in fair agreement with
each other for small Q. However, as the volume frac-
tion Q increases, differences appear gradually among
these theories.

Fig. 18 illustrates the reduced coarsening rate
K (Q)/K (0) variation against the volume fraction Q.
Those obtained by Ardell (MLSW), BW, MR, and VG
are also shown for comparison. In this figure, VG(D)
means the result given by the VG effective medium
theory (see Section 4.6) and the data bars are from
the computer simulation data [54]. The ETK results
with the soft-collision effects included is indicated by
ETK (d + S). The ETK result in which the collisionless
drift processes are taken into acount is also displayed as
ETK(d) for comparison with other theories. All the re-
sults agree up to Q ∼= 0.1 except those of Ardell and BW.
Beyond Q ∼ 0.1, ETK (d + S) starts to deviate from
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(a)

(b)

Figure 17 The ETK distribution functions p(ρ) at various volume frac-
tions Q. The results from other theories are also included [17]. (a) Q =
0.1 (b) Q = 0.35.

ETK (d). This agrees with the prediction of the VG sim-
ulation [26] that the spatial correlations begin to build
up at Q ∼ 0.1. Here we should remark that for Q > 0.2,
there is a disagreement between ETK (d + S) and the
result of the VG effective medium theory [VG(d)], al-
though the distribution function p(ρ) of both theories
are in good agreement at Q = 0.35.

Enomoto et al. [17] have also investigated the effects
of both the drift and soft-collision processes. The soft-
collision terms are of the order

√
Q, and hence the

effects on p(ρ) and K (Q) due to them are of the same
order as the drift contributions. The asymptotic solution

Figure 18 Plots of the relative coarsening rates K (Q)/K (0) in the ETK
model. Here (d) indicates the result with only the drift process and (d + S)
with both drift and soft-collision processes. The bars indicate the typical
scatters in the computer simulation data by VG [17].

for the relative size distribution function p(ρ) for both
the effect of the drift and soft-collision processes is

p(ρ) ∼ ρ exp

(
− ρ4

4εE

)
for large p. (102)

where

ε = (3lC D/K )
√

3Q/m3 (103)

In Figs 19–21 the particle size distribution function
involving both drift and soft-collision processes are

Figure 19 Plots of the ETK distribution function p(ρ) at Q = 0.01 [17].
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Figure 20 Plots of the ETK distribution functions p(ρ) at Q = 0.1. The
dots exhibit the results of the VG computer simulation [17].

Figure 21 Plots of the ETK distribution functions p(ρ) at Q = 0.35. The
dots are results of the VG computer simulation [17].

plotted at three different values of the volume fraction
Q = 0.01, 0.1 and 0.35, respectively, and are compared
with the LSW results and the ETK results that include
only the drift processes at the same values of the volume
fraction. In Figs 20 and 21 the dots represent the com-
puter simulation results by VG. From these we can say
that the effects of both processes on p(ρ) lead to further
flattening and broadening of the distribution function so
as to lower the peak and to shift it slightly to the left.
In Fig. 20 the VG distribution function with Q = 0.1

is not in agreement with the other theories especially
near ρ = 1, although agreement with the ETK theory is
better for large and small ρ. However, in Fig. 21 p(ρ)
for the VG theory at Q = 0.35 is in good agreement
with the ETK that includes both the drift and the soft-
collision processes.

5.9. The YEGG theory (a mean-field
theory) (1993)

Yao et al. [15] have made a thoretical approach to the
Ostwald ripening of precipitate particles in dimension
d ≥ 2. A mean-field theory was constructed to incorpo-
rate screening effects in the competing-particle system.
The mean-field equations were solved to infinite order
in the volume fraction and provide analytic expressions
for the coarsening rate, the time-dependent particle-
distribution function, and the time evolution of the total
number of particles.

In this study the dimensionless variables are used
(see Section 2.2). Units of length and time are given in
terms of a characteristic length

lC = (d − 1)γ�

RB T

and a characteristic time

t∗ = l2
C

dCe�

It is also convenient to introduce a dimensionless
concentration field

θ (r ) = C(r ) − C∞
C∞

All the quantities involved here have been defined in
Section 2.2.

The many-particle diffusion problem is intractable
without approximation. In the steady-state limit, the
fundamental Equation [13, 14, 26] (see Section 3.1) is

∇2θ (r ) = ϕ

N∑
Bi (r − ri ) (104)

where N is the number of the particles in the system,
ϕ = 2πd/2/�(d/2), ri gives the location of the i th parti-
cle, and Bi is the strength of the source or sink of current
for diffusion. This is the multiparticle diffusion (MPD)
equation in the quasistationary approximation, where
∂θ/∂t is neglected because the growth rate of particles
is much slower than the relaxation time of concentration
field in the matrix. The necessary boundary conditions
are the Gibbs-Thomson condition (Section 2.1) for the
concentration field at the curved surface of each particle
and the imposed supersaturation far from all particles:

θ (r )||r−ri |=Ri = 1

Ri
and lim

r→∞ θ (r ) = θav (105)

for i = 1, . . . , N , where θav is the average concentration
outside the particles. The conservation law is

N∑
i=1

Bi = 0 (106)
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which implies that the limit in which the minority phase
(within the particles) and majority phase (outside the
particles) are at their equilibrium concentration (see
Section 3.1), and the growth law satisfies

d
(
vRd

i

)
dt

= −
∫

si

J · n dσ (107)

where si is surface of the i th particle, n is the unit
vector normal to the particle surface, and v = πd/2/

�(d/2 + 1). Substituting the Fourier-Fick law J = −∇θ

into Equation 107 and transforming the surface integral
over the i th particle into a volume integral gives

d
(
vRd

i

)
dt

=
∫

∇2θ dv (108)

The explicit form of the growth law can then be obtained
by substituting Equation 104 in Equation 108, i.e.,

dRi

dt
= Bi

Rd
i

(109)

LSW made a mean-field approximation in the limit of
Q → 0 to solve these equations. For nonzero Q the
steady-state problem resembles a homogeneous elec-
tron gas since particles interact via the Laplace equa-
tion in the steady-state limit and charge neutrality is
invoked through Equation 106. Here screening effects
are introduced among the particles and approximate the
many-particle correlation effects in the same manner as
the Thomas-Fermi mechanism for Coulomb systems.
Within a mean-field approximation, the change in vol-
ume of a particle only depends on the concentration
gradients set up by each particle.

To compare with other theories and experiments The
YEGG model has given the scaled distribution function
using the conventional scale variable z = R/R̄ as

g(z) = xavG(xavz), i.e.,

g(z) =




−dλxav

ω(xavz, λ)
exp

[
dλ

∫ xavz

0
w−1(z′, λ) dz′

]
if 0 < z < zo

0 otherwise

(110)

where zo = xo/xav and xav = ∫ ∞
0 xG(x)dx . The proce-

dure for defining various functions and quantities such
as xo, λ, z′, z in Equation 110 are given in [15].

The average radius of the particles, R̄(t), and the total
number of the particles, N (t), can now be calculated.
From the definition given in [21], R̄(t) becomes

R̄(t) = [R̄(0) + K ′(Q)t]1/3 (111)

where K ′(Q) = 3λx3
av. Equation 111 indicates that the

coarsening exponent is universal and dimension inde-
pendent. For Q → 0 in d = 3, Equation 111 becomes

R̄(t) = [R̄3(0) + 4t/9]1/3

Figure 22 Comparison [15] of the YEGG scaled normalized distribution
functions g(z) for the YEGG model versus scaled particle radius z = R/R̄
for Q → 0 in d = 2, 3, 4, and 5.

(see Equation 30a), recovering the LSW result. Finally,
the time evolution of the number of the particles for the
YEGG model is given by

N (t) =
∫

f (R, t) dR = N (0)R̄d (0)

[R̄3(0) + K (Q)t]d/3
(112)

Fig. 22 shows the particle-distribution function for
Q → 0 in d = 2, 3, 4 and 5, which indicates that, in the
limit Q → 0, a higher-dimensional distribution func-
tion is broader than a lower-dimensional one. In this
limit, except d = 2, the growth rate becomes

dR

dt
= 1

R

[
xav

R̄
− 1

R

]
(113)

xav is a monotonically decreasing function of dimen-
sions d; therefore, the critical radius R∗ = R̄/xav in-
creases with dimensions d. As a result, more particles
shrink and less particles grow in higher dimensions than
in lower dimensions. The growing particles in higher
dimensions grow faster than those in lower dimensions
on average, which results in a broader range distribution
function for higher dimensions.

Fig. 23 presents the finite-volume-fraction effects
on the YEGG scaled normalized distribution function
(Equation 110) for d = 3. It indicates that the distribu-
tion function is sensitive to Q. As Q increases, g(z, Q)
becomes broader. In three dimensions, the growth law
becomes

dR

dt
= exp(R/ξ )

R

(
σ

u(t)
− 1

R

)
(114)

where u is arbitrary function of t in the scaling ansatz
f (R, t) = H (t)G[R/u(t)].

According to the numerical calculations, the screen-
ing length obeys ξ ∼ R̄/

√
3Q, and the critical radius

R∗ = u(t)/σ is insensitive to the volume fraction Q,
compared to exp(R/ξ ), where σ is defined in [15].
Consequently, as Q increases, the particles whose radii
are greater than the critical radius grow faster, and
the particles whose radii are smaller than the critical
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Figure 23 Predictions of the YEGG theory [15] for the scaled normal-
ized distribution g(z) versus scaled particle radius z = R/R̄ are displayed
for different Q for the dimension d = 3.

Figure 24 The scaled screening length ξ/R̄ is displayed [15] as a func-
tion of Q. The dotted, dashed and solid lines correspond to the results
of MR, ETK, and YEGG, respectively, in d = 2.

radius shrink faster, which leads to a broader particle
distribution.

Fig. 24 displays the relation between the scaled
screening length and the volume fraction: In d = 2, the
scaled screening length for the YEGG versus the vol-
ume fraction is almost the same as the MR model’s; in
d = 3, the present model is close to that of both MR and
TKE.

5.9.1. Basic equation for numerical
simulations

To test mean-field theory results of discussed in the
previous section, the numerical simulation similar to
that of the VG theory [14] (see Section 5.7) have been
used for the YEGG model. To derive the basic equa-
tions for this simulation, let us start from the solution
of Equation 104 in three dimensions, i.e.,

θ (r ) = Bo −
∑ Bi

|r − ri | (115)

where Bo is an integration constant which, in general,
is nonzero.

The Gibbs-Thomson boundary condition then
becomes

1

Ri
= Bo −

N∑
i=1

Bi

|ri − R j | (116)

where R j is a position vector of the j th particle’s bound-
ary, and R j = |R j −r j | is the j th particle’s radius. Using
a monopolar approximation Equation 116 becomes

1

R j
= Bo − B j

R j
−

N∑
i=1,i �= j

Bi

|r j − ri | (117)

This monopolar approximation (Equation 117) was also
adopted by the VG model [13, 14] (see Section 5.7) but
in a different form. The relative difference between the
growth rates {Bi } for the present model and the VG
work in their simulations is negligable. Therefore, the
basic equtions for the present model are believed to be
essentially the same as those of VG [15]. Similarly, the
solution of Equation 104 in two dimensions is

θ (r ) = Bo +
N∑

i=0

Bi ln|r − ri | (118)

The Gibbs-Thomson boundary condition then becomes

1

R j
= Bo + B j ln|R j − r j | +

∑
i=1,i �= j

Bi ln|R j − ri |
(119)

Using the monopolar approximation for three dimen-
sions Equation 119 can be written as

1

R j
= Bo + B j ln R j +

N∑
i=1,i �= j

Bi ln|r j − ri | (120)

To provide equations suitable for numerical simulation
in two dimensions, some manupilations of the funda-
mental equations are needed. To do so, let us split θ into
two pieces, i.e., θ = θ1 + θ2, θ1 and θ2 are solutions of
the following equations:

∇2θ1(r ) = −2πρ1(r ) (121)

and

∇2θ2(r ) = −2πρ2(r ) (122)

Using the techniques developed by Voorhees and
Glicksman [13–15] Equations 121 and 122 can be com-
bined in the following way:

θ (r ) = Bo − 1

2π

N∑
i=1

Bi

∫
e− k2

4η

k2
eik·(ri −r ) dk

−
∑

Bi

∫ ∞

|r−ri |

e−ηr ′

r ′ dr ′ (123)

where η is a positive constant.
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A tractable form of Equation 120 can then be found
using Equations 118, 123, and 120:

1

R j
= Bo + B j

[
ln(R j/L) +

∫ 1

0

1 − e−r
′2

r ′ dr ′

−
∫

e−r
′2

r ′ dr ′
]

−
∫

e−r
′2

r ′ dr ′
]

−
∑

Bi

∫ ∞

|r j −ri |/L

e−r
′2

r ′ dr ′

− 2π

L2

N∑
i=1

Bi

∑
k �=0

e−k2/4L2

k2
eik·(ri −r j ) (124)

where L is the system size. The basic equations used
to simulate two-dimensional Ostwald ripening are the
conservation law Equation 106, 124, and the two-
dimensional version of Equation 114.

5.9.2. Results of numerical simulation
The most-time consuming step in the simulation is the
calculation of the growth rates {Bi }, which is computa-
tionally of order N 3 (except for d = 3 with Q = 0). The
present approach is essentially the same as that of VG
(see Section 5.7).

To perform large-scale simulation it was started
with 50,000 particles and then iterated until the num-
ber of particles was reduced to 25,000. In each iter-
ation, only one particle was shrunk. The scaled dis-
tribution function, the time evolutions of both the
average particle radius and the total number of parti-
cles have been plotted in Figs 25–27, respectively. In
Fig. 25, the solid line is Equation 110 for d = 3 and
Q → 0; the different symbols correspond to different
times. All the symbols lying on the same universal
solid line confirm the scaling behaviour of distribu-
tion function. Figs 26 and 27 show that the present
numerical results give R̄(t) = [R̄3(0) + K ′(Q)t]1/3

and N (t) = N (0)R̄3(0)/[R̄3(0) + K ′(Q)t], respecti-

Figure 25 Predictions of the YEGG numerical simulation [15] for scaled
normalized distribution g(z) versus scaled particle radius z = R/R̄, in
d = 3 and Q → 0.

Figure 26 Results of numerical simulations for the time evolution of
the average particle size [R̄3(t) − R̄3(0) versus t] for Q = 0.1, 0.05 and
0.10 in d = 2, for the YEGG [15]. The straight line indicates the time
evolution of the average particle radius obeys R̄(t) = [R̄3(t) −R̄3(0)]1/3.

Figure 27 Plot for [N (0)R̄d (0)/N (t)3/d ] versus t for Q = 0, 0.05 and
0.10, in d = 2, for the YEGG model [15]. The straight lines indi-
cate that the time evolution of the number of the particles satisfies
N (t) = N (0)R̄d (0)/[K (Q)t + R̄3(0)]d/3.

vely, which are the same as Equations 111 and 112.
From Figs 26 and 27, the values for K (0) = 0.4442 and
K (0) = 0.4434 were obtained, from R and N , respec-
tively. The relative difference between these indepen-
dent measurements is about 0.2%. Comparing to the
theoretical result, 4/9 ∼= 0.4444, the relative difference
is less than 0.3%, quite better than that of the VG sim-
ulations carried out on small systems [13, 14, 26] (see
Section 5.7.).

Comparisons of the present simulations for g(z) and
d = 3, an experimental results [24], and other theo-
ries (i.e. MR, ETK, MLSW, Marder) are shown in
Fig. 28. The different symbols correspond to distri-
bution function at different times. All these symbols
lying on the same line confirm our the YEGG predic-
tion. The present prediction is closer to the simulation
and the experimental results.

6. Comparison of Ostwald ripening theories
The theory of Ostwald ripening determines how the
second phase particles with time change. Important
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Figure 28 Comparison [15] the distribution functions g(z) with other
theories, the simulations and an experiment is displayed in d = 3 for
Q = 0.05. The symbols (except the solid circles) are the simulation re-
sults. The different symbols correspond to different times at which the
number of remaining particles, N ∼= 600, 500, 400, and 300. The dotted,
long-dahed, dot-dotted, and solid lines are the respective predictions of
MR [12], ETK [17], MLSW [8], Marder [16], and YEGG in d = 3. Note
that the solid circle is the experimental distribution function at very late
times [28].

quantities of interests are the second-phase particle
size distribution function f (R, t), the average particle
radius R̄(t), and the total number of particles, N (t).
The classic Ostwald-ripening theory is attributed to
Lifhshitz and Slyzof [5, 6], and Wagner [7] (LSW),
who studied the case in which the volume fraction of the
second phase tends to zero, i.e., Q → 0, in dimension
d = 3. This important work revealed both power-law
growth and dynamic scaling, which are now considered
universal characteristics of the kinetics of a first-order
phase transition [55]. Earlier work on extending the the-
ory of LSW to nonzero Q has been attemted by many
groups [8–18, 19, 24, 26, 43–46, 56, 57] using both
analytic and numerical methods. For the most part, an-
alytic extensions have been based on either on ad hoc,
(the works of MLSW and TM) or on perturbative ex-
pansions in Q, typically taken to order Q1/2 [i.e., the
works of MR and ETK. In addition, a model was devel-
oped by Marder [16] in which two-particle correlations
were included for three-dimensional Ostwald ripening.

The important Ostwald ripening theories reviewed in
the previous sections, developed to describe systems in
which Q � 1, employed the same microscopic equa-
tion to describe the coarsening rates of individual par-
ticles, but different procedures to perform the statisti-
cal averaging. But, these theories are distinguished on
a finer scale [19, 26]. The theories of MR [12], BW
[9], and the computer simulations of VG [13, 14] do
not account for the effects of interparticle spatial cor-
relations that may develop during ripening, whereas
the theories of Marder [16], TK [18], and ETK [18,
58] do consider the influence of these spatial correla-
tions. All of these workers find that the presence of a
nonzero volume fraction of coarsening phase does not
alter the temporal exponents from those of the theo-
ries of LSW, but that it does alter the amplitudes of
the power laws. As an example, in his review paper
Voorhees [19] has constructed the rate constant plotted

Figure 29 The ratio of K (Q)/K (0) versus the volume fraction Q(19).
Also for the comparison the following models are included:Marder [16],
BW, TK, ETK (or TK), MR, and Marsh and Glicksman (MG) [59, 60],
along with rate constants from the computer simulations of Abinandanan
and Johnsson ([61] (�), Beenakker [62] (•), and Voorhees and Glicksman
[14] (*).

as a function of the volume fraction of coarsening phase
using the data taken from various works (see Fig. 29).
With the exception of Marder’s theory, all of the theo-
ries mentioned above predict a rather small increase in
the rate constant for small volume fractions of coarsen-
ing phase and are in close agreement. All of the theories
predict that the rate constant will vary as Q1/2 in this
low volume fraction limit. In addition, all of these the-
ories predict that the scaled time-independent particle
radius distributions become broader and more symmet-
ric than those predicted by LSW as the volume fraction
increases. Brailsford and Wynblatt (BW) [9], Voorhees
and Glickman (VG) [13, 14], Marqusee and Rose (MR)
[12], and Tokuyama and Kawasaki (TK) [18], have pro-
posed more realistic models of the coarsening process
at finite-volume fractions of coarsening phase.

All these models lead to the following growth law:

R̄(t) = [R̄3(0) + K ′(Q)t]1/3

where the coarsening rate K (Q) is a monolotically in-
creasing function of Q. The particle-size distribution
function satisfies

f (R, t) ∝ g(z, Q)/R̄d+1

where z ≡ R/R̄. The theories predict a broadening of
g(z, Q) as the volume fraction is increased. Unfortu-
nately, the perturbative theories can neither go beyond
#(

√
Q) nor be applied to two-dimensional systems, and

the ad hoc approaches contain uncontrolled approxima-
tions. In many cases, the theories for d = 3 give rather
different results.

Those Ostwald ripening models which performed the
statistical averaging procedure used identical micro-
scopic equations, but they arrived at quantitatively dif-
ferent results [19, 26]. The aim of each of the averaging
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procedures employed by BW, VG, TK, and MR is to
determine the statistically averaged growth rate Ṙ or a
statistically averaged source/sink strength B(Ṙ) = R2 Ṙ
of a given particle at a specified Q using Equations 127
and 128. In this averaging procedure, the coarsening
phase is again assumed to be spherical and fixed in
space. The emission or absorbtion of solute from grow-
ing or dissolving particles is modelled by placing point
sources or sinks of solute at the center of each particle.
Therefore, the diffusion field within the matrix obeys,

�2θ = +4π

N∑
i=1

Biδ(r − ri ) (125)

where the source sink strengths Bi are unknowns and
δ(r − ri ) is the Dirac δ function. The solution of Equa-
tion 125 is

θ = θm −
∑

Bi (r − ri ) (126)

where r locates a field point and ri locates a particle
center. The unknown constants Bi and θm are deter-
mined, as in the LSW treatment, by requiring interfa-
cial equilibrium and solute conservation. The boundary
condition along with the solute conversation constraint
yields the following set of boundary conditions:

B j = θm R j − R j

N∑
i=1
j=1

Bi/Bi j (127)

θm = θo − α

N∑
i=1

R3
i (128)

where Ri j ≡ r j − ri . Using Gauss’ law and Equa-
tion 125 it can shown that Bi = R2

i R j .
Using this result that Equation 128 can be reformu-

lated when t → ∞, θm → 0:

N∑
i=1

Bi = 0 (129)

Enomoto et al. [17] and Voorhees [26] have summa-
rized each of these statistical averaging source/sink
strength B(ρ) procedures, due to various Ostwald ripen-
ing models and are given below.

6.1. The Ardell (MLSW) theory
The source/sink strength for this model is

B(ρ) = [ξ (Q)ρ − 1] [1 + ξ (Q)g2(Q)ρ] (130)

where ξ (Q) is again given by solving Equation 2.19
in [17] and g2 (Q) is defined by where ρ = R/R̄, ξ =
R̄/RC

g2(Q) = 6Q1/3
/∫

(x + 8Q)−2/3 exp(−x) dx (131)

6.2. The BW theory
This model (Section 5.2) employs chemical rate theory
to determine the statistically averaged growth rate of a
particle, which is the ad hoc nature of the rate theory.

Brailsford [63] has shown that in the limit of a monodis-
persion, i.e. diffusion to a random array of absorbing
sinks, a statistical average of equations similar to Equa-
tion 127 agree with the predictions of the BW effective
medium approach.

The predictions of the variation of a particle sink
strength with Q derived using the BW effective medium
approach in the monodisperse limit are similar to those
reported for diffusion-controlled reactions [64]. There
are similarities between the MR and BW models. BW
use a simple interpolation formula, which yields the
following rate equation in the long-time limit,

B(ρ) = [ξ (Q)ρ − 1][1 + ξ (Q)g1(Q)ρ] (132)

where ξ (Q) = R̄/R∗ and g1(Q) are given by

g1(Q) = [1/ξ (Q) − 1]/[ξ (Q)m2(Q) − 1] (133)

m3ξ
2 − {2m3 + 3Qm2(m2 − 1)}ξ + m3

+ 3Q(m2 − 1) = 0 (134)

B(ρ) is time independent, since R̄ and R∗ have the same
time kinetics as t → ∞. Also, the BW theory reduces
to the LSW limit since as Q → 0. Performing a similar
asymptotic analysis as LSW, Equation 132 yields the
results shown in Figs 30 and 31.

6.3. The MR theory
The MR model (Section 5.5) [12] determine the statis-
tically averaged kinetic equation based on a multiple
scattering approach [49, 51]. In this work, the micro-
scopic equation such Equations 127 and 126 are used

Figure 30 Time-independent scaled particle size distributions versus
ρ = R/R̄. The distributions due to BW, MR, VG, and TK are all for
Q = 0.1, and the LSW distribution is for Q = 0. [26]
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Figure 31 The K (Q)/K (0) ratio versus the volume fraction Q [26].

in the form of an averaged multiple scattering series. In
the long-time limit, this theory concludes

B(ρ) = (aoσ1ρ − 1)
[
1 + aoρ(3QNoao)1/2] (135)

Where ρ = R/R̄. Here ao, No and σ1 are the amplitudes
of the temporal power laws of the reduced average ra-
dius, the number density of particles and the reduced
concentration, respectively, in the long time limit, as
defined in MR. The rate constants No and σ1 are deter-
mined by employing the time independent continuity
equation valid in the long time limit and mass conser-
vation. As with TK theory, and Q → 0, ao = 1/σ1 and
the LSW distribution and time kinetics are recaptured.
B(ρ) is time independent at all volume fractions. Fur-
thermore, for Q ≤ 0.01 a perturbation treatment pre-
dicts that K (Q) − K (0) ∼ Q1/2. Numerical evaluation
of ao, σ1, and No yields the particle size distribution
shown in Fig. 30 along with K (Q) shown in Fig. 31.
The MR kinetic equation, at Q = 0.1, is also shown in
Fig. 32.

Figure 32 The sink strength B(ρ) = R2 Ṙ versus ρ at Q = 0.1. The non-
linearity of B(ρ) data indicates that diffusional interactions between
particles results in an increase in the absolute value of the statistically
averaged coarsening rate of a particle [26].

6.4. The TK theory
The TK theory) (Section 5.6) [18] used the statistically
averaged Equation 127 through a scaling expansion
technique originally developed by Mori and cowork-
ers [73–76]. They find for

√
3Q < 1, in the late stage

regime,

B(ρ) = ρ−1−ρ(M2−ρ)(3Q)1/2−C(3Q)1/2 (136)

where ρ ≡ R/R̄, Mn =∫ ∞
0 ρn f (R · t) dR/

∫ ∞
0 f (R · t)

dR and C is a complex function of ρ and Mn(25).
Their expression for B(ρ) becomes time independent
as t → ∞ since f (R, t) → g(ρ)h(t). As a result, scale-
invariant distributions exist in the long-time limit. The
first two terms in Equation 136 are simply the LSW
kinetic equation in the limit t → ∞ and thus as Q → 0
the TK theory also reproduces the LSW results. The
third term is a drift term in particle size space. The
fourth term is a soft collision term resulting from the
diffusion interactions between particles on distances of
order

√
3Q/R̄. In the initial TK paper, they use Equa-

tion 136 along with the continuity equation and con-
clude that the scaled time-independent distributions are
a function of Q and that the rate constant K is indepen-
dent of Q, and find that both K and g(ρ) are functions of
Q. The time-independent scaled distribution function
found by setting C = 0 is shown in Fig. 30.

6.5. The VG theory
Voorhees and Glickman (the VG theory) [13, 14] em-
ploy Equations 127 and 129 along with computer sim-
ulation techniques to perform the statistical averaging.
The periodic nature of the particle arrangement allows
Equations 127 to be reformulated into two conver-
gent summations using lattice summation techniques
originall developed by Ewald [65]. At finite Q, the
coarsening particles interact diffusionally, which re-
sults in fluctiations in individual particle coarsening
rates. Using the simulations, VG [14] constructed a
simple effective medium which reproduces the B(ρ)
and rate constant data derived from the simulations
over 0.05 ≤ Q ≤ 0.5. The VG effective medium ap-
proach involves placing a representative particle inside
an averaging sphere of radius a, where a = 1/Q1/3 for
ρ ≤ ρC and a = R/Q1/3 for ρ ≥ ρC, where ρ = R/R̄
and ρC = R∗/R̄. The concentration at the surface of
the averaging sphere is a functional of g(ρ), yields the
following kinetic equation:

B(ρ) = ((α′ρ − 1)(1 + α′Q1/3ρ)S(ρc − ρ)

+ (α′ρ − 1)(1 + Q1/3)S(ρ − ρc) (137)

Where α′ is a functional of the moments of g(ρ) and
S(x) is a step function defined as 0 for x < 0 and 1 for
x > 0. Clearly as Q → 0 the LSW result is recaptured
and B(ρ) is time independent, since α′ is only a function
of Q. The VG kinetic equation at Q = 0.1 is shown in
Fig. 32. Asymptotic analysis of the scaled continuity
equation and mass conservation constraint yields the
results shown in Figs 30 and 31.
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6.6. Similarities and dissimilarities in
Ostwald ripening theories

In his review work Voorhees [37] has summarized
the agreement and disagreement between the various
Ostwald ripening theories developed previously (i.e.,
LSW, BW, VG, MR, TK). Here is this summary:

6.6.1. Similarities in the Ostwald
ripening theories

(a) the temporal power laws originally developed by
LSW are not a function of Q; however, the amplitude
of the power laws is Q dependent; (b) scaled time in-
varient distribution functions exist at finite Q in the
long-time limit; (c) as the particle volume fraction Q in-
creases, the time invarient distributions become broader
and more symmetric than the LSW distribution; (d) the
rate constant rises rapidly at low Q and is followed by a
slower increase with Q; (e) the predictions for K (Q) of
VG and MR are almost identical up to Q ∼ 0.1; and ( f )
the B(ρ) versus ρ plot in MR and GV are quite similar
and in agreement with the VG simulation data, all three
descriptions showing increased diffusional interactions
with increasing Q which result in an increase in the ab-
solute value of the statistically averaged coarsening rate
of a particle in a given size class.

6.6.2. Disagreements in the Ostwald
ripening theories

(a) The disagreement between the K (Q) predictions
of BW and those of both VG and MR probabily orig-
inates from BW’s use of an ad hoc linear interpola-
tion formula; (b) the VG model disagrees with MR for
Q < 10−3 since MR predict that K (Q) − K (0) ∼ Q1/3;
(c) the TK theory claims that the small difference be-
tween the rate constants predicted by TK and MR re-
sults from the MR B(ρ) function violating the conserva-
tion of mass constraint; (d) The disagreement between
the K (Q) prediction of GV, and MR at Q ≥ 0.12 orig-
inates from a breakdown in the assumptions employed
by MR; i.e., MR assume that there are no spatial cor-
relations between particles. The simulations performed
by VG indicate that spatial correlations begin to occur at
Q ∼ 0.1. Therefore, extension of the MR theory above
Q ∼ 0.1 is probably not justified; (e) the TK model pre-
dicts that to order

√
3Q soft collision terms are present

in the B(ρ) function. VG’s simulations also suggest that
these collision processes should be present and play an
important role in the coarsening process. Such collision
processes were ignored in the MR model.

7. Concluding remarks: Comparison of
Ostwald ripening theories with
experiments

An experimental test of the theories describing the ef-
fects of a finite volume fraction of corsening phase on
the kinetics of Ostwald ripening is difficult problem.
The volume fraction of corsening phase must be small
and, in particular, the system must satisfy all the as-
sumptions of the theory. The difficulty in producing

Figure 33 Rate constant [19], K , as a function of volume fraction, Q,
following solid-liquid systems: Sn-Pb, Pb-Sn [35], Fe-Cu [69], and Co-
Cu [70].

accurate data is illustrated by the rate constant data in
the NiAl system, which have been compiled by Ardell
[66]. In this work, for many experiments performed us-
ing low volume fractions of Ni3Al particles in Ni-Al
alloy system, the statistical scatter of the data is greater
than the factor of 2 or 3 change in the rate constant pre-
dicted by some of these theories. Thus it is difficult to
conclude on the basis of these data if the volume frac-
tion affects the rate constant in the manner predicted by
theory.

It is clear, however, that the volume fraction of ripen-
ing phase does alter the rate constant. Fig. 33 shows a
compilation of rate constant data for systems consisting
of solid particles in a liquid [67]. In these systems, the
ripening rate is quite rapid and a factor of 10 change
in the average particle size is easily attainable in most
experiments. The line is a cubic spline fit to the data,
which employed the rate constant calculated from the
LSW theory at Q = 0. There is a clear increase in the
rate constant with volume fraction and, given the dif-
ferent experimental conditions and alloy systems, it is
interesting that all the data appear to fall on one curve.

Mahalingham et al. [68] have investigated the
Al-Li alloys having different compositions and com-
pared their results with the various Ostwald ripening
theories. The theories compared with experiments are
the LSW, MLSW, BW, LSEM, TM, VG models. All
these theories incorporate the role of volume fraction
of the precipitate. It may be useful to briefly summa-
rize the features common to all these theories, so that
comparisons of the experimental observations can be
made in terms of these features. The main predictions
of all the coresening theories are: (a) A steady state
distribution of particles develops irrespective of the
nature of the assumed initial distribution of particles;
(b) a linear relationship between the cube of the aver-
age particle size and time, where the slope of this line
is the growth rate constant, K ; and (c) a broadening of
the particle size distribution (PSD) and increase in the
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Figure 34 Comparison of the observed particle size distribution for the
A1-2.4%Li alloy with the LSEM model [68].

rate constant with an increase in the volume fraction of
the precipitate Q.

It appears that only the LSEM theory will be accurate
in modelling the particle size distribution even though
the other theories also predict a broadening of the dis-
tribution with increase in Q. Thus an attempt was made
[68] to generate the LSEM distributions corresponding
to the volume fractions of δ′ phase in Al-Li alloys under
investigation. Fig. 34 shows the PSD for Al-2.4% Li al-
loy. It can be seen that for this alloy the LSEM curve is
in rather good agreement with the observed PSD.

In order to compare the observed growth rate con-
stants with those predicted by the Ostwald ripening the-
ories, one needs to evaluate the value of the growth rate
constant for the LSW approximation, i.e. at zero vol-
ume fraction; K (0). The expression for K (0) is given
by

K (0) = 8

9

Ce�
2γ D

RB T
(see Equation 39)

where � is the molar volume of the precipitate
(m3/mol), Ce is the equilibrium solute content of the
matrix (mol/m3), γ is the surface energy (J/m2) and D
is the diffusion coefficient (m2/s). The calculated val-
ues were in closer agreement to the values predicted
by MLSW theory and were significantly greater than
those predicted by the other theories. The ratios K (Q)/
K (0.12) was computed and compared with the corre-
sponding ratios predicted by the theories. The results
[68] are shown in Table I. Again, the experimentally de-
termined ratio was in closer agreement to the MLSW
theory than the other models.

Alternatively, we may compute the values of K (0)
each theory, as determined from the predicted value of

T ABL E I Comparison of the observed and theoretically predicted
K (Q)/K (0), for K (Q) [68]

K (Q)

K (0.12)

K (Q)

K (0.12)

K (Q)

K (0.12)

K (Q)

K (0.12)

K (Q)

K (0.12)

Q Measured MLSW BW LSEM VG

0.12 1 1 1 1 1
0.24 1.67 1.56 1.32 1.14 1.29
0.26 2.08 1.78 1.38 1.17 1.33
0.45 2.39 2.56 1.82 1.34 2.14
0.55 3.44 3.13 1.89 1.44 2.5

K (Q)/K (0) and the experimental value of K (Q). Us-
ing this value K (0), the K (Q)/K (0) for other values of
K (Q) can be computed and this can be compared with
the predicted values. Thus the value of K (0) was cal-
culated from K (0.12)/K (0) and the results have been
tabulated [68] in Table II. Here again, it is seen that
MLSW values are more in agreement with the observed
values.

The above calculations indicate that all the theories
mentioned above except the MLSW theory, underesti-
mate the effect of volume fraction on the growth rate
constant. It was suggested [68] that this could be due
to the contribution of particle encounters in increasing
the growth rate of particles, which might be fortuitous.
In spite of its good agreement with the observed PSDs,
the LSEM model predicts very low rate constants. As
pointed out by Voorhees and Glickman [14], this could
be due to the assumption in the LSEM model, that the
LSW growth rate equation is valid for nonzero volume
fractions.

Calderon and Fine [71] have studied the corsening ki-
netics of NiAl type precipitate particles in Fe-Ni-Al-Mo
alloys. They have investigated the effects of the volume
fraction Q of precipitates and compared the experimen-
tal results with the theoretical predictions of the LSW
and BW models. They calculated the K (4.4)/K (0) ra-
tio to be 1.61 for the BW model. Using Equation 39
and the K (4.4)/K (0) ratio the value of the interfacial
energy γ was evaluated as 1.8–2.6 × 10−2 Jm−2. The
VG model [72] predicts the 1.4 and 1.27 values for
the K (6.4)/K (0) and K (4.4)/K (0) ratios, respectively.
From this ratios the interfacial energy was calculated
[71] to be (2.3–3.3) × 10−2 Jm−2 in the same alloy.
The slight differences with the predictions of the BW
model do not appreciably change the value of γ , if the
experimental error is taken into account. Fig. 35 shows

Figure 35 Particle size distributions for the aging time 100 h at 700◦C
in Fe-Ni-Al-Mo alloy. For the comparison the works of LSW and BW
are also included [71].
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T ABL E I I Comparison of observed and theoretically predicted K (Q)/K (0) ratios for K (Q) [68]

MLSW BW LSEM VG

Q

[
K (Q)

K (0)

]
p

[
K (Q)

K (0)

]
o

[
K (Q)

K (0)

]
p

[
K (Q)

K (0)

]
o

[
K (Q)

K (0)

]
p

[
K (Q)

K (0)

]
o

[
K (Q)

K (0)

]
p

[
K (Q)

K (0)

]
o

0.12 6.15 6.15 2.07 2.07 1.36 1.36 1.7 1.7
0.24 9.61 10.27 2.73 3.46 1.56 2.27 2.20 2.84
0.26 10.96 12.78 2.37 4.30 1.6 2.83 2.25 3.54
0.45 15.76 14.72 3.78 4.96 1.83 3.26 3.64 4.07
0.55 19.23 21.16 3.91 7.12 1.96 4.68 4.25 5.85

[K (Q)/K (0)]p : Predicted ratio; [K (Q)/K (0)]o: Observed ratio.

T ABL E I I I Moments of the theoretical and experimental particle size
distributions for Q = 4.4 for an Fe-Ni-Al-Mo alloy aged at different times
[71]

Size distribution Variance Skewness Kurtosis

Alloy; 5 h 0.099 1.5217 5.7073
Alloy; 30 h 0.0716 0.2905 3.6126
Alloy; 50 h 0.0873 2.2097 × 10−3 3.4991
Alloy; 100 h 0.1398 0.2711 2.7083
BW (Q = 4.4) [9] 0.056525 −0.71638 3.1915
TM (Q = 4.0, model III [11] 0.06127 −0.67786 3.11233
TM (Q = 4.0, model III [11] 0.08214 −0.46551 2.73655
(LESM) (Q = 4.4) [10] 0.05948 −0.4987 3.188

the particle size distributions determined from precipi-
tate measurements. In this figure the ordinates ρ2h(ρ)
where ρ represents the normalized particle size as de-
fined by the LSW. Empirically ρ2h(ρ) was calculated
[30] according to

ρ2h(ρ) = N (R, R + �R)∑
(R, R + �R)

· R̄

�R
· 9

4

The distribution function predicted by the LSW and
BW models have been superimposed on the empirical
histograms in Fig. 35.

Table III shows a quantitative comparison between
the empirical and theoretical distributions which is
based on the calculation of the moments of the size
distribution as well as the coefficients skewness and
kurtosis. Table III also shows the results predicted by
the BW, TM (two of the six models developed by the
TM) and LSEM models. In all these cases, poor agree-
ment was found especially in the skewness parameter
where a negative value is invariably predicted and the
the empirical result yields either a positive or at least a
considerably less negative value. The quantitative com-
parison suggests that volume fraction effects are not the
only effects that need to be taken into consideration in
the Ostwald ripenin theory. Other effects such as the
interactions of dislocations were suggested [71] to give
rise to the accelarated growth of some particles (as a
result of fast diffusion).

Although the aforementioned theories are by far the
most realistic theories of Ostwald ripening yet devel-
oped, they are only in qualitative agreement on the role
of finite volume fractions on the coarsening behaviour
of two-phase systems. Unfortunately, a crucial exper-
iment has not been performed at low Q in order to
compare to the theories. Work at higher Q is in qualita-
tive agreement with the aformentioned theoretical pre-

dictions, i.e., time-independent distribution functions
which are broader and more symmetric than LSW.

According to our knowledge, a coarsening experi-
ment has never been done using a system for which all
the relavent materials parameters were known priori.
Such an approach would permit a direct measurement of
K (Q). Clearly more experimental and theoretical work
is necessary in order to settle the subtle disagreement
now existing between the various Ostwald ripening
theories.
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